• 제목/요약/키워드: color segmentation

검색결과 544건 처리시간 0.024초

보행자 상반신 검출에서의 컬러 세그먼테이션 활용 (Exploiting Color Segmentation in Pedestrian Upper-body Detection)

  • 박래정
    • 전자공학회논문지
    • /
    • 제51권11호
    • /
    • pp.181-186
    • /
    • 2014
  • 본 논문에서는 보행자 상반신 검출기의 성능을 향상하기 위한 세그먼테이션에 기반한 특징 추출 방법을 제안한다. 상반신의 부분별 색상 분포를 활용한 멀티 파트 컬러 세그먼테이션을 사용하여 국소 특징이 갖는 한계로 인해 발생하는 오검출의 감소에 효과적인 "전역적" 윤곽 특징을 추출한다. 컬러 공간과 히스토그램 분해도에 따른 성능을 분석하였으며, 자체 구축한 보행자 상반신 영상을 사용한 실험을 통해서 제안한 방법으로 추출한 특징이 국소 특징 기반 검출기의 오검출 감소에 효과적임을 확인하였다.

거리정규화 레벨셋을 이용한 칼라객체분할 (Color Object Segmentation using Distance Regularized Level Set)

  • 란 안;이귀상
    • 인터넷정보학회논문지
    • /
    • 제13권4호
    • /
    • pp.53-62
    • /
    • 2012
  • 객체분할은 영상처리와 컴퓨터비전분야의 상당히 어려운 연구대상이다. 그레이스케일 영상에 대한 영상분할은 매우 많은 방법이 발표되었으며 다양한 영상특징과 처리방법이 제시되었다. 이러한 방법들은 대개 자연상태의 칼라 영상에 적용되기 어렵다. 본 논문에서는 기하학적인 Active Contour 모델의 수정된 형태, 즉 거리정규화레벨셋(distance regularized level set evolution: DRLSE)을 이용한 방법을 제시하여 스피드 함수가 이러한 칼라요소를 반영하도록 하였으며 실험결과 정확성과 시간효율성에 있어서 우수한 결과를 보여주었다.

치아 영상의 반사 제거 및 치아 영역 자동 분할 (Individual Tooth Image Segmentation with Correcting of Specular Reflections)

  • 이성택;김경섭;윤태호;이정환;김기덕;박원서
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1136-1142
    • /
    • 2010
  • In this study, an efficient removal algorithm for specular reflections in a tooth color image is proposed to minimize the artefact interrupting color image segmentation. The pixel values of RGB color channels are initially reversed to emphasize the features in reflective regions, and then those regions are automatically detected by utilizing perceptron artificial neural network model and those prominent intensities are corrected by applying a smoothing spatial filter. After correcting specular reflection regions, multiple seeds in the tooth candidates are selected to find the regional minima and MCWA(Marker-Controlled Watershed Algorithm) is applied to delineate the individual tooth region in a CCD tooth color image. Therefore, the accuracy in segmentation for separating tooth regions can be drastically improved with removing specular reflections due to the illumination effect.

스케일 공간 필터와 FCM을 이용한 컬러 영상영역화에 관한 연구 (A Study on the Color Image Segmentation Algorithm Based on the Scale-Space Filter and the Fuzzy c-Means Techniques)

  • 임영원;이상욱
    • 대한전자공학회논문지
    • /
    • 제25권12호
    • /
    • pp.1548-1558
    • /
    • 1988
  • In this paper, a segmentation algorithm for color images based on the scale-space filter and the Fuzzy c-means (FCM) techniques is proposed. The methodology uses a coarse-fine concept to reduce the computational burden required for the FCM. The coarse segmentation attempts to segment coarsely using a thresholding technique, while a fine segmentation assigns the unclassified pixels by a coarse segmentation to the closest class using the FCM. Attempts also have been made to compare the performance of the proposed algorithm with other algorithms such as Ohlander's, Rosenfeld's, and Bezdek's. Intensive computer simulations has been done and the results are discussed in the paper. The simulation results indicate that the proposed algorithm produces the most accurate segmentation on the O-K-S color coordinate while requiring a reasonable amount of computational effort.

  • PDF

레이다 및 카메라 내장형 스마트 조명에서 실종자 탐지용 색상 검출 향상 기법 (Enhancement Techniques of Color Segmentation for Detecting Missing Persons in Smart Lighting System using Radar and Camera Sensors)

  • 송승언;김상동;진영석;이종훈
    • 한국산업정보학회논문지
    • /
    • 제25권3호
    • /
    • pp.53-59
    • /
    • 2020
  • 본 논문은 레이더와 카메라를 이용한 스마트 조명 시스템에서 실종자 탐지를 위한 색상 검출 방안을 제안한다. 최근 레이더와 카메라가 내장된 스마트 조명 시스템이 에너지 절약과 동시에 효율적인 실종자 검색에 도움이 된다고 보고 된 바 있다. 스마트 조명 시스템에서 레이다 센서는 조명 주변에 움직임을 감지한다. 조명 주변에서 움직임이 감지되면, 조명이 작동하고 카메라는 녹화기능을 수행한다. 여기서, 스마트 조명에 녹화된 영상은 실종자를 탐색하는 데 활용한다. 특히, 녹화된 영상에서 실종된 사람이 입고 있는 옷의 색상은 실종자를 찾는 데 중요한 단서 중의 하나이다. 이러한단서인 옷의 색상을 식별하기 위한 방법으로 색상 검출을 활용한다. 또한, 색상 검출 과정에서 배경의 영향을 줄이기 위해서 대상체를 고려한 ROI(Region of interest)를 적용한다. 실험 결과에 따르면, ROI를 적용한 경우 색상 검출의 정확도는 97% 이상을 보였다.

Color-based Image Retrieval using Color Segmentation and Histogram Reconstruction

  • Kim, Hyun-Sool;Shin, Dae-Kyu;Kim, Taek-Soo;Chung, Tae-Yun;Park, Sang-Hui
    • KIEE International Transaction on Systems and Control
    • /
    • 제12D권1호
    • /
    • pp.1-6
    • /
    • 2002
  • In this study, we propose the new color-based image retrieval technique using the representative colors of images and their ratios to a total image size obtained through color segmentation in HSV color space. Color information of an image is described by reconstructing the color histogram of an image through Gaussian modelling to its representative colors and ratios. And the similarity between two images is measured by histogram intersection. The proposed method is compared with the existing methods by performing retrieval experiments for various 1280 trademark image database.

  • PDF

Balloon을 이용한 3차원 Visible human 컬러 영상의 분할 방법 (Segmentation of 3D Visible Human Color Images by Balloon)

  • 김한영;김동성;강흥식
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(5)
    • /
    • pp.73-76
    • /
    • 2001
  • A segmentation is a prior processing for medical image analysis and 3D reconstruction. This Paper provides the method to segment 3D Visible Human color images. Firstly, the reference images that have a initial curve are segmented using Balloon and the results are propagated to the adjacent images. In the propagation processing, the result of the adjacent slice is modified by Edge-limited SRG Finally, the 3D Balloon improves the segmentation results of each 2D slice. the proposed method's performance was verified through the experiments to segment thigh muscles of Visible Human color images.

  • PDF

입술영역 분할을 위한 CIELuv 칼라 특징 분석 (Analysis of CIELuv Color feature for the Segmentation of the Lip Region)

  • 김정엽
    • 한국멀티미디어학회논문지
    • /
    • 제22권1호
    • /
    • pp.27-34
    • /
    • 2019
  • In this paper, a new type of lip feature is proposed as distance metric in CIELUV color system. The performance of the proposed feature was tested on face image database, Helen dataset from University of Illinois. The test processes consists of three steps. The first step is feature extraction and second step is principal component analysis for the optimal projection of a feature vector. The final step is Otsu's threshold for a two-class problem. The performance of the proposed feature was better than conventional features. Performance metrics for the evaluation are OverLap and Segmentation Error. Best performance for the proposed feature was OverLap of 65% and 59 % of segmentation error. Conventional methods shows 80~95% for OverLap and 5~15% of segmentation error usually. In conventional cases, the face database is well calibrated and adjusted with the same background and illumination for the scene. The Helen dataset used in this paper is not calibrated or adjusted at all. These images are gathered from internet and therefore, there are no calibration and adjustment.

Content based image retrieval using maximum color

  • 박종안
    • 한국정보전자통신기술학회논문지
    • /
    • 제6권4호
    • /
    • pp.232-237
    • /
    • 2013
  • This paper presents image database retrieval based on maximum color occurrenceusing Hue, Saturation and Value (HSV) color space. Our system is based on color segmentation. We dividedthe image into n number of areas based on different selected ranges of hue and value, then each area is partitioned into m number of segments based on the number of pixels it contains, after this we calculated the maximumcolor occurrence in each segment and used its HSV value. This is used as a feature vector.

기계시각장치에 의한 토마토 작물의 병해엽 검출 (Machine Vision Based Detection of Disease Damaged Leave of Tomato Plants in a Greenhouse)

  • 이종환
    • Journal of Biosystems Engineering
    • /
    • 제33권6호
    • /
    • pp.446-452
    • /
    • 2008
  • Machine vision system was used for analyzing leaf color disorders of tomato plants in a greenhouse. From the day when a few leave of tomato plants had started to wither, a series of images were captured by 4 times during 14 days. Among several color image spaces, Saturation frame in HSI color space was adequate to eliminate a background and Hue frame was good to detect infected disease area and tomato fruits. The processed image ($G{\sqcup}b^*$ image) by OR operation between G frame in RGB color space and $b^*$ frame in $La^*b^*$ color space was useful for image segmentation of a plant canopy area. This study calculated a ratio of the infected area to the plant canopy and manually analyzed leaf color disorders through an image segmentation for Hue frame of a tomato plant image. For automatically analyzing plant leave disease, this study selected twenty-seven color patches on the calibration bars as the corresponding to leaf color disorders. These selected color patches could represent 97% of the infected area analyzed by the manual method. Using only ten color patches among twenty-seven ones could represent over 85% of the infected area. This paper showed a proposed machine vision system may be effective for evaluating various leaf color disorders of plants growing in a greenhouse.