• Title/Summary/Keyword: color segmentation

Search Result 544, Processing Time 0.024 seconds

VS-FCM: Validity-guided Spatial Fuzzy c-Means Clustering for Image Segmentation

  • Kang, Bo-Yeong;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.89-93
    • /
    • 2010
  • In this paper a new fuzzy clustering approach to the color clustering problem has been proposed. To deal with the limitations of the traditional FCM algorithm, we propose a spatial homogeneity-based FCM algorithm. Moreover, the cluster validity index is employed to automatically determine the number of clusters for a given image. We refer to this method as VS-FCM algorithm. The effectiveness of the proposed method is demonstrated through various clustering examples.

A design of MPEG-4 video object segmentation using color/motion information (칼라/움직임 정보를 이용한 MPEG-4 비디오 객체 분할 설계)

  • 김준기;이호석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.206-208
    • /
    • 2000
  • 본 논문은 칼라 정보와 움직임 정보를 이용한 객체 분할 기법의 설계에 대하여 소개한다. 객체 분할 알고리즘은 L*u*v 공간의 칼라 특성과 움직임 특성을 결합하여 설계하였다. 즉 공간 분할은 mean shift 칼라 클러스터링 알고리즘(color clustering algorithm)을 사용하여 중심 칼라 영역에 따라 동일한 칼라 지역으로 통합한다. 시간 분할은 움직임 검출을 위하여 affine six parameter 움직임 모델과 optical flow equation를 이용하여 움직임이 발생한 부분을 검출한다. 다음에 공간 분할과 시간 분할에 따라 결과를 통합하고 MAD(mean absolute difference)를 사용하여 객체를 추출하는 알고리즘을 설계하였다.

  • PDF

Color image segmentation by level set method (레벨셋 기법을 이용한 컬러 이미지 분할)

  • Yoo, Ju-Han;Jung, Moon-Ryul
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.2
    • /
    • pp.9-15
    • /
    • 2012
  • In this paper, we propose a method to segment a color image into several meaningful regions. We suppose that the meaningful region has a set of colors with high frequency in the color image. To find these colors, the color image is represented as several sets of color points in RGB space. And when we use the density of points defined in this method, color belonging to a dense region of color points in RGB space refers to the color that appeared frequently in the image. Eventually, we can find meaningful regions by looking for regions with high density of color points using our level set function in RGB space. However, if a meaningful region does not have a contiguous region of the sufficient size in the image, this is not a meaningful region but meaningless region. Thus, the pixels in the meaningless region are assigned to the biggest meaningful region belonging to its neighboring pixels in the color image. Our method divides the color image into meaningful regions by applying the density of color points to level set function in RGB space. This is different from the existing level set method that is defined only in 2D image.

The Robust Skin Color Correction Method in Distorted Saturation by the Lighting (조명에 의한 채도 왜곡에 강건한 피부 색상 보정 방법)

  • Hwang, Dae-Dong;Lee, Keunsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1414-1419
    • /
    • 2015
  • A method for detecting a skin region on the image is generally used to detect the color information. However, If saturation lowered, skin detection is difficult because hue information of the pixels is lost. So in this paper, we propose a method of correcting color of lower saturation of skin region images by the lighting. Color correction process of this method is saturation image acquisition and low-saturation region classification, segmentation, and the saturation of the split in the low saturation region extraction and color values, the color correction sequence. This method extracts the low saturation regions in the image and extract the color and saturation in the region and the surrounding region to produce a color similar to the original color. Therefore, the method of extracting the low saturation region should be correctly preceding. Because more accurate segmentation in the process of obtaining a low saturation regions, we use a multi-threshold method proposed Otsu in Hue values of the HSV color space, and create a binary image. Our experimental results for 170 portrait images show a possibility that the proposed method could be used efficiently preprocessing of skin color detection method, because the detection result of proposed method is 5.8% higher than not used it.

Illumination Compensation Based on Conformity Assessment of Highlight Regions (고휘도 영역의 적합성 평가에 기반한 광원 보상)

  • Kwon, Oh-Seol
    • Journal of Broadcast Engineering
    • /
    • v.19 no.1
    • /
    • pp.75-82
    • /
    • 2014
  • This paper proposes an illuminant compensation method using a camera noise analysis without segmentation in the dichromatic reflectance model. In general, pixels within highlight regions include large amounts of information on the image illuminant. Thus, the analysis of highlight regions provides a relatively easy means of determining the characteristics of an image illuminant. Currently, conventional methods require regional segmentation and the accuracy of this segmentation then affects the illuminant estimation. Therefore, the proposed method estimates the illuminant without segmentation based on a conformity assessment of highlight regions. Furthermore, error factors, such as noise and sensor non-uniformity, can be reduced by the conformity assessment.

Robust Segmentation for Low Quality Cell Images from Blood and Bone Marrow

  • Pan Chen;Fang Yi;Yan Xiang-Guo;Zheng Chong-Xun
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.637-644
    • /
    • 2006
  • Biomedical image is often complex. An applied image analysis system should deal with the images which are of quite low quality and are challenging to segment. This paper presents a framework for color cell image segmentation by learning and classification online. It is a robust two-stage scheme using kernel method and watershed transform. In first stage, a two-class SVM is employed to discriminate the pixels of object from background; where the SVM is trained on the data which has been analyzed using the mean shift procedure. A real-time training strategy is also developed for SVM. In second stage, as the post-processing, local watershed transform is used to separate clustering cells. Comparison with the SSF (Scale space filter) and classical watershed-based algorithm (those are often employed for cell image segmentation) is given. Experimental results demonstrate that the new method is more accurate and robust than compared methods.

Region-based Image Retrieval using Wavelet Transform and Image Segmentation (웨이브릿 변환과 영상 분할을 이용한 영역기반 영상 검색)

  • 이상훈;홍충선;곽윤식;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1391-1399
    • /
    • 2000
  • In this paper, we discussed the region-based image retrieval method using image segmentation. We proposed a segmentation method which can reduce the effect of a irregular light sources. The image segmentation method uses a region-merging, and candidate regions which are merged were selected by the energy values of high frequency bands in discrete wavelet transform. The content-based image retrieval is executed by using the segmented region information, and the images are retrieved by a color, texture, shape feature vector. The similarity measure between regions is processed by the Euclidean distance of the feature vectors. The simulation results shows that the proposed method is reasonable.

  • PDF

Object-oriented Classification of Urban Areas Using Lidar and Aerial Images

  • Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.173-179
    • /
    • 2015
  • In this paper, object-based classification of urban areas based on a combination of information from lidar and aerial images is introduced. High resolution images are frequently used in automatic classification, making use of the spectral characteristics of the features under study. However, in urban areas, pixel-based classification can be difficult since building colors differ and the shadows of buildings can obscure building segmentation. Therefore, if the boundaries of buildings can be extracted from lidar, this information could improve the accuracy of urban area classifications. In the data processing stage, lidar data and the aerial image are co-registered into the same coordinate system, and a local maxima filter is used for the building segmentation of lidar data, which are then converted into an image containing only building information. Then, multiresolution segmentation is achieved using a scale parameter, and a color and shape factor; a compactness factor and a layer weight are implemented for the classification using a class hierarchy. Results indicate that lidar can provide useful additional data when combined with high resolution images in the object-oriented hierarchical classification of urban areas.

Effectiveness of Edge Selection on Mobile Devices (모바일 장치에서 에지 선택의 효율성)

  • Kang, Seok-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.149-156
    • /
    • 2011
  • This paper proposes the effective edge selection algorithm for the rapid processing time and low memory usage of efficient graph-based image segmentation on mobile device. The graph-based image segmentation algorithm is to extract objects from a single image. The objects are consisting of graph edges, which are created by information of each image's pixel. The edge of graph is created by the difference of color intensity between the pixel and neighborhood pixels. The object regions are found by connecting the edges, based on color intensity and threshold value. Therefore, the number of edges decides on the processing time and amount of memory usage of graph-based image segmentation. Comparing to personal computer, the mobile device has many limitations such as processor speed and amount of memory. Additionally, the response time of application is an issue of mobile device programming. The image processing on mobile device should offer the reasonable response time, so that, the image segmentation processing on mobile should provide with the rapid processing time and low memory usage. In this paper, we demonstrate the performance of the effective edge selection algorithm, which effectively controls the edges of graph for the rapid processing time and low memory usage of graph-based image segmentation on mobile device.

Performance Improvement of Stereo Matching by Image Segmentation based on Color and Multi-threshold (컬러와 다중 임계값 기반 영상 분할 기법을 통한 스테레오 매칭의 성능 향상)

  • Kim, Eun Kyeong;Cho, Hyunhak;Jang, Eunseok;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.44-49
    • /
    • 2016
  • This paper proposed the method to improve performance of a pixel, which has low accuracy, by applying image segmentation methods based on color and multi-threshold of brightness. Stereo matching is the process to find the corresponding point on the right image with the point on the left image. For this process, distance(depth) information in stereo images is calculated. However, in the case of a region which has textureless, stereo matching has low accuracy and bad pixels occur on the disparity map. In the proposed method, the relationship between adjacent pixels is considered for compensating bad pixels. Generally, the object has similar color and brightness. Therefore, by considering the relationship between regions based on segmented regions by means of color and multi-threshold of brightness respectively, the region which is considered as parts of same object is re-segmented. According to relationship information of segmented sets of pixels, bad pixels in the disparity map are compensated efficiently. By applying the proposed method, the results show a decrease of nearly 28% in the number of bad pixels of the image applied the method which is established.