• Title/Summary/Keyword: color segmentation

Search Result 544, Processing Time 0.028 seconds

Texture superpixels merging by color-texture histograms for color image segmentation

  • Sima, Haifeng;Guo, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2400-2419
    • /
    • 2014
  • Pre-segmented pixels can reduce the difficulty of segmentation and promote the segmentation performance. This paper proposes a novel segmentation method based on merging texture superpixels by computing inner similarity. Firstly, we design a set of Gabor filters to compute the amplitude responses of original image and compute the texture map by a salience model. Secondly, we employ the simple clustering to extract superpixles by affinity of color, coordinates and texture map. Then, we design a normalized histograms descriptor for superpixels integrated color and texture information of inner pixels. To obtain the final segmentation result, all adjacent superpixels are merged by the homogeneity comparison of normalized color-texture features until the stop criteria is satisfied. The experiments are conducted on natural scene images and synthesis texture images demonstrate that the proposed segmentation algorithm can achieve ideal segmentation on complex texture regions.

Color Segmentation robust to Illumination Variations based on Statistical Methods of Hue and Saturation including Brightness (밝기 변화를 고려한 색상과 채도의 확률 모델에 기반한 조명변화에 간인한 컬러분할)

  • Kim, Chi-Ho;You, Bum-Jae;Kim, Hagbae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.10
    • /
    • pp.604-614
    • /
    • 2005
  • Color segmentation takes great attentions since a color is an effective and robust visual cue for characterizing one object from other objects. Color segmentation is, however, suffered from color variation induced from irregular illumination changes. This paper proposes a reliable color modeling approach in HSI (Hue-Saturation-Intensity) rotor space considering intensity information by adopting B-spline curve fitting to make a mathematical model for statistical characteristics of a color with respect to brightness. It is based on the fact that color distribution of a single-colored object is not invariant with respect to brightness variations even in HS (Hue-Saturation) plane. The proposed approach is applied for the segmentation of human skin areas successfully under various illumination conditions.

A Multi-Layer Perceptron for Color Index based Vegetation Segmentation (색상지수 기반의 식물분할을 위한 다층퍼셉트론 신경망)

  • Lee, Moon-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.16-25
    • /
    • 2020
  • Vegetation segmentation in a field color image is a process of distinguishing vegetation objects of interests like crops and weeds from a background of soil and/or other residues. The performance of the process is crucial in automatic precision agriculture which includes weed control and crop status monitoring. To facilitate the segmentation, color indices have predominantly been used to transform the color image into its gray-scale image. A thresholding technique like the Otsu method is then applied to distinguish vegetation parts from the background. An obvious demerit of the thresholding based segmentation will be that classification of each pixel into vegetation or background is carried out solely by using the color feature of the pixel itself without taking into account color features of its neighboring pixels. This paper presents a new pixel-based segmentation method which employs a multi-layer perceptron neural network to classify the gray-scale image into vegetation and nonvegetation pixels. The input data of the neural network for each pixel are 2-dimensional gray-level values surrounding the pixel. To generate a gray-scale image from a raw RGB color image, a well-known color index called Excess Green minus Excess Red Index was used. Experimental results using 80 field images of 4 vegetation species demonstrate the superiority of the neural network to existing threshold-based segmentation methods in terms of accuracy, precision, recall, and harmonic mean.

Semi-Automatic Segmentation based on Color Information (색상 정보를 이용한 반자동 영상분할 기법)

  • 김민호;최재각;호요성
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.619-622
    • /
    • 1999
  • This paper describes a new semi-automatic segmentation algorithm based on color information. Semi-automatic segmentation mainly consists of intra-frame segmentation and inter-frame segmentation. While intra-frame segmentation extracts video objects of interest from boundary information provided by the user and intensity information of the image, inter-frame segmentation partitions the image into the video objects and background by tracking the motion of video objects. For inter-frame segmentation, color information (Y, Cb and Cr) of the current frame can be used efficiently in order to find the exact boundary of the video objects. In this paper we propose a new region growing algorithm which can maximize the ability of region differentiation, while preserving features of each color component.

  • PDF

A Background Segmentation Using Color and Edge Information In Low Resolution Color Image (저해상도 칼라 영상의 색상 정보와 에지정보를 이용한 배경 분리)

  • 정민영;박성한
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.39-42
    • /
    • 2003
  • In this paper, we propose a background segmentation method in low resolution color image. A segmentation algorithm is based on color and edge information. In edge image, adaptive and local thresholds are applied to suppress paint boundaries. Through our experiments, the proposed algorithm efficiently segments background from objects.

  • PDF

Color Segmentation of Vehicle License Plates in the RGB Color Space Using Color Component Binarization (RGB 색상 공간에서 색상 성분 이진화를 이용한차량 번호판 색상 분할)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.49-54
    • /
    • 2014
  • This paper proposes a new color segmentation method of vehicle license plates in the RGB color space. Firstly, the proposed method shifts the histogram of an input image rightwards and then stretches the image of the histogram slide. Secondly, the method separates each of the three RGB color components and performs the adaptive threshold processing with the three components, respectively. Finally, it combines the three components under the condition of making up a segment color and removes noises with the morphological processing. The proposed method is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiments were conducted by using real vehicle images. The results show that the proposed algorithm is successful for most vehicle images. However, the method fails in some vehicles when the body and the license plate have the same color.

Segmentation of the Lip Region by Color Gamut Compression and Feature Projection (색역 압축과 특징치 투영을 이용한 입술영역 분할)

  • Kim, Jeong Yeop
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.11
    • /
    • pp.1279-1287
    • /
    • 2018
  • In this paper, a new type of color coordinate conversion is proposed as modified CIEXYZ from RGB to compress the color gamut. The proposed segmentation includes principal component analysis for the optimal projection of a feature vector into a one-dimensional feature. The final step adopted for lip segmentation is Otsu's threshold for a two-class problem. The performance of the proposed method was better than that of conventional methods, especially for the chromatic feature.

Color Image Segmentation by statistical approach (확률적 방법을 통한 컬러 영상 분할)

  • Gang Seon-Do;Yu Heon-U;Jang Dong-Sik
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1677-1683
    • /
    • 2006
  • Color image segmentation is useful for fast retrieval in large image database. For that purpose, new image segmentation technique based on the probability of pixel distribution in the image is proposed. Color image is first divided into R, G, and B channel images. Then, pixel distribution from each of channel image is extracted to select to which it is similar among the well known probabilistic distribution function-Weibull, Exponential, Beta, Gamma, Normal, and Uniform. We use sum of least square error to measure of the quality how well an image is fitted to distribution. That P.d.f has minimum score in relation to sum of square error is chosen. Next, each image is quantized into 4 gray levels by applying thresholds to the c.d.f of the selected distribution of each channel. Finally, three quantized images are combined into one color image to obtain final segmentation result. To show the validity of the proposed method, experiments on some images are performed.

  • PDF

Bone Segmentation Method of Visible Human using Multimodal Registration (다중 모달 정합에 의한 Visible Human의 뼈 분할 방법)

  • Lee, Ho;Kim, Dong-Sung;Kang, Heung-Sik
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.719-726
    • /
    • 2003
  • This paper proposes a multimodal registration method for segmentation of the Visible Human color images, in which color characteristics of bones are very similar to those of its surrounding fat areas. Bones are initially segmented in CT images, and then registered into color images to lineate their boundaries in the color images. For the segmentation of bones in CT images, a thresholding method is developed. The registration method registers boundaries of bodies in CT and color images using a cross-correlation approach, in which the boundaries of bodies are extracted by thresholding segmentation methods. The proposed method has been applied to segmentation of bones in a head and legs whose boundary is ambiguous due to surrounding fat areas with similar color characteristics, and produced promising results.

A Color Image Segmentation Algorithm based on Region Merging using Hue Differences (색상 차를 이용하는 영역 병합에 기반한 칼라영상 분할 알고리즘)

  • 박영식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.63-71
    • /
    • 2003
  • This paper describes a color image segmentation algorithm based on region merging using hue difference as a restrictive condition. The proposed algorithm using mathematical morphology and a modified watershed algorithm does over-segmentation in the RGB space to preserve contour information of regions. Then, the segmentation result of color image is acquired by repeated region merging using hue differences as a restrictive condition. This stems from human visual system based on hue, saturation, and intensity. Hue difference between two regions is used as a restrictive condition for region merging because it becomes more important factor than color difference if intensity is not low. Simulation results show that the proposed color image segmentation algorithm provides efficient segmentation results with the predefined number of regions for various color images.