• Title/Summary/Keyword: color motion segmentation

Search Result 51, Processing Time 0.029 seconds

Motion Segmentation from Color Video Sequences based on AMF

  • Kim, Alla;Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.31-38
    • /
    • 2009
  • A process of identifying moving objects from data is typical task in many computer vision applications. In this paper, we propose a motion segmentation method that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter (AMF) was chosen to perform background modelling. To demonstrate the effectiveness of proposed approach, we tested it gray-scale video data as well as RGB color space.

  • PDF

Moving Object Tracking Method in Video Data Using Color Segmentation (칼라 분할 방식을 이용한 비디오 영상에서의 움직이는 물체의 검출과 추적)

  • 이재호;조수현;김회율
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.219-222
    • /
    • 2001
  • Moving objects in video data are main elements for video analysis and retrieval. In this paper, we propose a new algorithm for tracking and segmenting moving objects in color image sequences that include complex camera motion such as zoom, pan and rotating. The Proposed algorithm is based on the Mean-shift color segmentation and stochastic region matching method. For segmenting moving objects, each sequence is divided into a set of similar color regions using Mean-shift color segmentation algorithm. Each segmented region is matched to the corresponding region in the subsequent frame. The motion vector of each matched region is then estimated and these motion vectors are summed to estimate global motion. Once motion vectors are estimated for all frame of video sequences, independently moving regions can be segmented by comparing their trajectories with that of global motion. Finally, segmented regions are merged into the independently moving object by comparing the similarities of trajectories, positions and emerging period. The experimental results show that the proposed algorithm is capable of segmenting independently moving objects in the video sequences including complex camera motion.

  • PDF

RGB Motion Segmentation using Background Subtraction based on AMF

  • Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.2
    • /
    • pp.81-87
    • /
    • 2013
  • Motion segmentation is a fundamental technique for analysing image sequences of real scenes. A process of identifying moving objects from data is a typical task in many computer vision applications. In this paper, we propose motion segmentation that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter (AMF) was chosen to perform background modeling. Motion segmentation in this paper covers RGB video data.

RGB Motion Segmentation using Background Subtraction based on AMF

  • Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.61-67
    • /
    • 2014
  • Motion segmentation is a fundamental technique for analysing image sequences of real scenes. A process of identifying moving objects from data is a typical task in many computer vision applications. In this paper, we propose motion segmentation that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter(AMF) was chosen to perform background modeling. Motion segmentation in this paper covers RGB video data.

Automatic Object Segmentation and Background Composition for Interactive Video Communications over Mobile Phones

  • Kim, Daehee;Oh, Jahwan;Jeon, Jieun;Lee, Junghyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.125-132
    • /
    • 2012
  • This paper proposes an automatic object segmentation and background composition method for video communication over consumer mobile phones. The object regions were extracted based on the motion and color variance of the first two frames. To combine the motion and variance information, the Euclidean distance between the motion boundary pixel and the neighboring color variance edge pixels was calculated, and the nearest edge pixel was labeled to the object boundary. The labeling results were refined using the morphology for a more accurate and natural-looking boundary. The grow-cut segmentation algorithm begins in the expanded label map, where the inner and outer boundary belongs to the foreground and background, respectively. The segmented object region and a new background image stored a priori in the mobile phone was then composed. In the background composition process, the background motion was measured using the optical-flow, and the final result was synthesized by accurately locating the object region according to the motion information. This study can be considered an extended, improved version of the existing background composition algorithm by considering motion information in a video. The proposed segmentation algorithm reduces the computational complexity significantly by choosing the minimum resolution at each segmentation step. The experimental results showed that the proposed algorithm can generate a fast, accurate and natural-looking background composition.

  • PDF

An Image Segmentation Technique For Very Low Bit Rate Video Coding

  • Jung, Seok-Yoon;Kim, Rin-Chul;Lee, Sang-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.06a
    • /
    • pp.19-24
    • /
    • 1997
  • This paper describes an image segmentation technique for the object-oriented coding at very low bit rates. By noting that, in the object-oriented coding technique, each objects are represented by 3 parameters, namely, shape, motion, and color informations, we propose a segmentation technique, in which the 3 parameters are fully exploited. To achieve this goal, starting with the color space conversion and the noise reduction, the input image is divided into many small regions by the K-menas algorithm on the O-K-S color space. Then, each regions are merged, according to the shape and motion information. In simultations, it is shown that the proposed technique segments the input image into relevant objects, according to the shape and motion as well as the colors. In addition, in order to evaluate the performance of the proposed technique, we introduce the notion of the interesting regions, and provide the results of encoding the image with emphasizing the interesting regions.

  • PDF

Semi-Automatic Segmentation based on Color Information (색상 정보를 이용한 반자동 영상분할 기법)

  • 김민호;최재각;호요성
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.619-622
    • /
    • 1999
  • This paper describes a new semi-automatic segmentation algorithm based on color information. Semi-automatic segmentation mainly consists of intra-frame segmentation and inter-frame segmentation. While intra-frame segmentation extracts video objects of interest from boundary information provided by the user and intensity information of the image, inter-frame segmentation partitions the image into the video objects and background by tracking the motion of video objects. For inter-frame segmentation, color information (Y, Cb and Cr) of the current frame can be used efficiently in order to find the exact boundary of the video objects. In this paper we propose a new region growing algorithm which can maximize the ability of region differentiation, while preserving features of each color component.

  • PDF

Motion Segmentation for Layer Decomposition of Image Sequences (영상 시퀀스의 계층 분리를 위한 움직임 분할)

  • 장정진;오정수;홍현기;최종수
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.29-32
    • /
    • 2000
  • This paper proposes a motion segmentation algorithm for layer decomposition of image sequences. The proposed algorithm segments an image into initial regions by using its color and texture and computes a motion model of each initial region. Each pixel assigns one of the motion represented by the models or a motion except them, which segments the image into the motion regions. The proposed algorithm is app]ied image sequences and the segmented motion is shown.

  • PDF

Adaptive Color Snake Model for Real-Time Object Tracking

  • Seo, Kap-Ho;Jang, Byung-Gi;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.740-745
    • /
    • 2003
  • Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks suck as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. Snake is designed no the basis of snake energies. Segmenting and tracking can be executed successfully by energy minimization. In this research, two new paradigms for segmentation and tracking are suggested. First, because the conventional method uses only intensity information, it is difficult to separate an object from its complex background. Therefore, a new energy and design schemes should be proposed for the better segmentation of objects. Second, conventional snake can be applied in situations where the change between images is small. If a fast moving object exists in successive images, conventional snake will not operate well because the moving object may have large differences in its position or shape, between successive images. Snakes's nodes may also fall into the local minima in their motion to the new positions of the target object in the succeeding image. For robust tracking, the condensation algorithm was adopted to control the parameters of the proposed snake model called "adaptive color snake model(SCSM)". The effectiveness of the ACSM is verified by appropriate simulations and experiments.

  • PDF

Video Scene Segmentation Technique based on Color and Motion Features (칼라 및 모션 특징 기반 비디오 씬 분할 기법)

  • 송창준;고한석;권용무
    • Journal of Broadcast Engineering
    • /
    • v.5 no.1
    • /
    • pp.102-112
    • /
    • 2000
  • The previous video structuring techniques are mainly limited to shot or shot group level. However, the shot level structure couldn't provide semantics within a video. So, researches on high level structuring are going on for getting over the drawbacks of shot level structure, recently. To overcome the drawbacks of shot level structure, we propose video scene segmentation technique based on color and motion features. For considering various color distribution, each shot is divided into sub-shots based on color feature. A key frame is extracted from each sub-shot. The motion feature in a shot is extracted from MPEG-1 video's motion vector. Moreover adaptive weights based on motion's property in search range are applied to color and motion features. The experiment results of proposed technique show the excellence in view of the over-segmentation and the reflection of semantics, comparing with those of previous techniques. The proposed technique decomposes video into meaningful hierarchical structure and provides video browsing or retrieval based on scene.

  • PDF