• Title/Summary/Keyword: color lens

Search Result 158, Processing Time 0.02 seconds

An Optimal Combination of Illumination Intensity and Lens Aperture for Color Image Analysis

  • Chang, Y. C.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.35-43
    • /
    • 2002
  • The spectral color resolution of an image is very important in color image analysis. Two factors influencing the spectral color resolution of an image are illumination intensity and lens aperture for a selected vision system. An optimal combination of illumination intensity and lens aperture for color image analysis was determined in the study. The method was based on a model of dynamic range defined as the absolute difference between digital values of selected foreground and background color in the image. The role of illumination intensity in machine vision was also described and a computer program for simulating the optimal combination of two factors was implemented for verifying the related algorithm. It was possible to estimate the non-saturating range of the illumination intensity (input voltage in the study) and the lens aperture by using a model of dynamic range. The method provided an optimal combination of the illumination intensity and the lens aperture, maximizing the color resolution between colors of interest in color analysis, and the estimated color resolution at the combination for a given vision system configuration.

  • PDF

The Change of the Accommodative Amplitude in Accordance with the Color of the Spectacle Lens or Object (안경 렌즈 및 물체의 색상에 따른 최대 조절력 변화)

  • Oh, Byung Ha;Lee, Jae Ho;Jung, Sea Hun;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.119-124
    • /
    • 2008
  • Purpose: To determine whether the accommodation of amplitude (AA) was changed by the color of the spectacle lens or object. Methods: AA was measured in forty subjects in their 20s when they viewed different targeton-background color combination with achromatic, gray, brown or green lens. Minus-lens procedures were used for the estimation of AA. Results: When subjects viewed the black-on-white, red-on-white and green-on-white targets, AA under tinted lens tended to be increased compared with AA under achromatic lens. Especially, the green lens significantly increased AA whatever the color of target was. Furthermore, as subjects viewed the green target, AA was the highest irrespective of the color of lens. AA was also changed depending on the color of background, so AA on the red background was lower than on the white background. On the contrary, AA on the green background was higher than on the red or white backgrounds. Of tinted lens, the gray lens increased AA the lowest, but the green lens did the highest. The number of subjects, whose AA were measured more than 9 D, reached to 12.5% with the gray lens, 21.3% with the brown lens, 22.5% with the green lens on the green background, but 5%, 6.5% and 6.5% on the red background, respectively. Conclusions: This results showed that AA varied depending on the color of spectacle lens, objects or background, and the eye fatigue could be decreased with proper color of spectacle lens accordingly.

  • PDF

A Color-Filterless LCD with RGB LED and Lenticular-Lens Arrays

  • Kwon, Jin-Hyuk
    • Journal of Information Display
    • /
    • v.11 no.2
    • /
    • pp.45-48
    • /
    • 2010
  • A direct-lit liquid crystal display that does not use color filters is proposed. A backlight unit that employs compartmentalized RGB LED and lenticular-lens arrays is used instead of color filters to direct the RGB LED lights into the RGB subpixels. The color-filterless LED backlight design, simulation, and experiment results are presented.

A Color-Filterless LCD by using RGB LED array and lenticular lens array

  • Kwon, Jin-Hyuk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.76-78
    • /
    • 2009
  • A liquid crystal display that does not use color filters is proposed. A backlight unit that employs compartmentalized RGB LED arrays and a lenticular lens array is used instead of the color filters in order to direct RGB LED lights into the RGB subpixels. A design of color-filterless LED backlight and experimental results are presented.

  • PDF

Improvement of Color Temperature Uniformity of Integrated Optic Lens Type LED Packaged using Compression Molding Method (가압성형 방식을 사용한 렌즈 일체형 LED 패키지의 색온도 균일성 향상에 관한 연구)

  • Kim, Wan-Ho;Kang, Young-Rae;Jang, Min-Suk;Joo, Jae-Young;Song, Sang-Bin;Kim, Jae-Pil;Yeo, In-Seon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.1-7
    • /
    • 2013
  • Optical characteristics including the view angle and color temperature uniformity of LED packages with an integrated lens fabricated by compression molding method are investigated according to lens shape, lens materials, and phosphor coating methods. Four types of lens shape are designed and their optical output power dependence on the refractive index of silicone encapsulant are evaluated. Also, spatial color temperature uniformities of packages fabricated with different phosphor coating methods-direct coating on a chip vs. uniformly mixed with silicone encapsulant- are compared at various view angles. As the result, it is found that phosphor coating method is more effective on color temperature uniformity than lens shape. The maximum color temperature difference of a package with direct coating of phosphor on a chip is 1,340K according to the view angle at the color temperature of 5,000K, and that of a package with uniformly mixed phosphor is 250K, which indicates 1,090K improvement of color uniformity for the latter case.

The Effect of Stereoscopic Vision According to Lens Color Change of Sunglasses (선글라스의 렌즈 색상 변화가 입체시에 미치는 영향)

  • Kim, Bong-Hwan;Han, Sun-Hee;Shin, Ji-Eun;Kim, Hye-Ryeong;Kang, Bo-Gyeong;Park, Jeong-Hyeon
    • Journal of Korean Clinical Health Science
    • /
    • v.6 no.1
    • /
    • pp.1083-1088
    • /
    • 2018
  • Purpose. The purpose of this study was to investigate the effect of lens color of sunglasses on stereoacuity by experiment. Methods. We conducted a stereotaxic test using a RANDOM DOT with a polarizing lens at an examination distance of 40 cm in 100 men and women aged 20 to 60 years without any specific ocular disease. Then, seven kinds of PVC color film such as yellow, black, brown, red, purple, blue and green were put on the polarizing lens and the stereoscopic examination was carried out again. Results. When the lens color of the sunglasses is yellow, black, and brown, it affects less stereoscopic effect. However, red, purple, blue, and green have much influence on stereoscopic effect. Especially, the red and purple colors affected the stereoscopic vision. In blue and green, the effect of stereoscopic vision was different according to the people. Conclusions. Depending on the lens color of the sunglasses, stereoscopic vision is affected, which can cause problems in binocular vision. Therefore, when choosing sunglass lens color, many buyers need to pay attention.

A study of transmittance and color change of various photochromic lenses by an UVA lamp (UVA광원에 의한 Photochromic lens의 색비율 제어에 관한 연구)

  • Lim, Yong-Moo;Jung, Ju Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.2
    • /
    • pp.185-191
    • /
    • 2003
  • In this study, We measured transmittance and color change of various photochromic lens as a function of temperature(6, 12, $28^{\circ}C$), irradiation time of UVA lamp and the types of materials(plastic and glass) and distribution of photochromic ingredients(coated and bulk type). The coated-type photochromic lens showed higher saturated value than bulk-type lens without regard to temperature. And darkening rate of smoke color lenses were higher compare to brown lens in case of glass photochromic lens. All of photochromic lens passed ANSI Z80.3 regulation in transmittance and color independent of temperature. The saturated values of plastic photochromic lens excluded coated-type and glass photochromic lens were ranked as cosmetic use. The saturated value of coated-type. Tbr and TMs were general applications in $6^{\circ}C$ and $12^{\circ}C$, but cosmetic purpose in $28^{\circ}C$. The darkening rate was increased with decreasing temperature, whereas the fading rate became higher with increasing temperature.

  • PDF

Color-Matching Liquid Crystal Display using a Lenticular Lens Array and RGB Light Sources

  • Jeon, Hwa Joon;Park, Gyeungju;Gwag, Jin Seog;Lee, Jong Hoon;Kwon, Jin Hyuk
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.345-349
    • /
    • 2014
  • A direct-lit color-matching liquid crystal display using a lenticular lens array with grouped lens elements that image linear RGB light sources on the RGB subpixels of a color filter to enhance transmittance is designed, simulated, and fabricated. The RGB LED linear light sources were fabricated using small RGB LEDs in a linear array arrangement, and the lenticular lens array consisted of eight units of the same structure with a gap of 2.19 mm. The optical transmittance of the liquid crystal panel was improved by as much as 240% due to the color matching.

The Change of Accommodative Functions by Difference Density and Color (착색렌즈의 농도와 색상에 따른 조절기능 변화)

  • Jang, Jung Un
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.453-459
    • /
    • 2018
  • Purpose : This study was to investigate the change of accommodative functions by different color density and color of colored lenses. Methods : Participant had a normal NPC and no dyschromatopsia, phoria and eye disease, also had no histories of eye surgery in 31 students of university. Their accommodative functions were measured according to 50%, 80% density of the gray, blue, brown lens and non-colored lenses. Tests of accommodative functions performed include amplitude of accommodation, accommodative facility, relative accommodation, and accommodative lag. Results : The amplitude of accommodation and accommodation lag were increased when wearing the colored lens. Negative relative accommodation was more increased when wearing the colored lens than achromatic. Positive relative accommodation increased when wearing the blue color lens density by 50%. Also, accommodation facility increased when wearing the colored lens, but, as the density of the color increased, the accommodation facility was decreased. Conclusion : As since the accommodation function changes according to density of the colored lenses, working distance and environment of the wearing colored lens should be considered when selecting density and color of colored lenses.

The Properties of the Absorption Spectra in Tinted Material of Lens and Color Lens (렌즈 염색제와 칼라 렌즈의 광흡수 특성)

  • Kim, Yong-Geun;Park, Sang-An
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.65-71
    • /
    • 1999
  • The optical absorption spectrum was measured of the tinted powder, tinted solution and tinted lens in the visible regions. The tinted powder was very different with color of tinted lens that the optical absorptions was so higher, composed of the thick-gray color. The optical absorptions of tinted solution were just a little appeared by the energy split of a transition metal ion, so constructed with each color space. The optical absorptions of the tinted lens were appeared with the energy split peaks to a transition metal ion, so its were affected by the color constructions. The optical absorption peaks of each lens were depend on the tinted time. Blue color lens had a lot of absorption in the short wavelength regions than 500nm, and had a little appeared in the high wavelength regions than 500nm. In case of a yellow color, the optical absorptions were appeared quite contrary to the blue color, so these colors had the opponent-colors each other. In case of green color, the optical absorptions had a high in the both edges, had a low in the middle regions. In the pink color, by the optical absorptions form of quite contrary to the green color it, these colors had the opponent-colors each other. In the brown color, the optical absorptions had a maximum values in the short wavelength regions, and it gradually decreased goes by the long wavelength regions.

  • PDF