• Title/Summary/Keyword: color images

Search Result 2,708, Processing Time 0.036 seconds

Efficient Homography Estimation for Panoramic Image Generation (효율적인 호모그래피 추정을 통한 파노라마 영상 생성)

  • Seo, Sangwon;Joeng, Soowoong;Han, Yunsang;Choi, Jongsoo;Lee, Sangkeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.215-224
    • /
    • 2013
  • An efficient homography estimation method for large sized images is proposed. Estimating an accurate homography is one of the most important parts in image stitching processes. Since hardwares have been advanced, it has been passible to take higher resolution images. However, computational cost for estimating homography has been also increased. Specifically, when too many features exist in the images, it requires lots of computations to estimate a correct homography. Furthermore, there is a high probability of obtaining an incorrect homography. Therefore, we propose a numerical method to extract the appropriate correspondences from several down-scaled images to estimate and compensate the homography numerically for restoring an original homography. Also, if there is an unbalance in color tone between the reference and the target images, we make them balanced by using local information of the overlapped regions. Experimental results show that proposed method is three times faster in 3.2 mega pixel images, five times faster in 8mega pixel images than the conventional approach. Therefore, we believe that the proposed method can be a useful tool to efficiently estimate a homography.

A Preliminary Analysis on the Radiometric Difference Across the Level 1B Slot Images of GOCI-II (GOCI-II Level 1B 분할영상 간의 복사 편차에 대한 초기 분석)

  • Kim, Wonkook;Lim, Taehong;Ahn, Jae-hyun;Choi, Jong-kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1269-1279
    • /
    • 2021
  • Geostationary Ocean Color Imager II (GOCI-II), which are now operated successfully since its launch in 2020, acquires local area images with 12 Level 1B slot images that are sequentially acquired in a 3×4 grid pattern. The boundary areas between the adjacent slots are prone to discontinuity in radiance, which becomes even more clear in the following Level 2 data, and this warrants the precise analysis and correction before the distribution. This study evaluates the relative radiometric biases between the adjacent slots images, by exploiting the overlapped areas across the images. Although it is ideal to derive the statistics from humongous images, this preliminary analysis uses just the scenes acquired at a specific time to understand its general behavior in terms of bias and variance in radiance. Level 1B images of February 21st, 2021 (UTC03 = noon in local time) were selected for the analysis based on the cloud cover, and the radiance statistics were calculated only with the ocean pixels. The results showed that the relative bias is 0~1% in all bands but Band 1 (380 nm), while Band 1 exhibited a larger bias (1~2%). Except for the Band 1 in slot pairs aligned North-South, biases in all direction and in all bands turned out to have biases in the opposite direction that the sun elevation would have caused.

A METHOD OF IMAGE DATA RETRIEVAL BASED ON SELF-ORGANIZING MAPS

  • Lee, Mal-Rey;Oh, Jong-Chul
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.793-806
    • /
    • 2002
  • Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the highspeed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps (SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called topological feature map. A topological feature map preserves the mutual relations (similarity) in feature spaces of input data. and clusters mutually similar feature vectors in a neighboring nodes. Each node of the topological feature map holds a node vector and similar images that is closest to each node vector. In topological feature map, there are empty nodes in which no image is classified. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.

Classification of Radish and Chinese Cabbage in Autumn Using Hyperspectral Image (하이퍼스펙트럼 영상을 이용한 가을무와 배추의 분류)

  • Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.91-97
    • /
    • 2016
  • The objective of this study was to classify between radish and Chinese cabbage in autumn using hyperspectral images. The hyperspectral images were acquired by Compact Airborne Spectrographic Imager (CASI) with 1m spatial resolution and 48 bands covering the visible and near infrared portions of the solar spectrum from 370 to 1044 nm with a bandwidth of 14 nm. An object-based technique is used for classification of radish and Chinese cabbage. It was found that the optimum parameter values for image segmentation were scale 400, shape 0.1, color 0.9, compactness 0.5 and smoothness 0.5. As a result, the overall accuracy of classification was 90.7 % and the kappa coefficient was 0.71. The hyperspectral images can be used to classify other crops with higher accuracy than radish and Chines cabbage because of their similar characteristic and growth time.

Vision Based Outdoor Terrain Classification for Unmanned Ground Vehicles (무인차량 적용을 위한 영상 기반의 지형 분류 기법)

  • Sung, Gi-Yeul;Kwak, Dong-Min;Lee, Seung-Youn;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.372-378
    • /
    • 2009
  • For effective mobility control of unmanned ground vehicles in outdoor off-road environments, terrain cover classification technology using passive sensors is vital. This paper presents a novel method far terrain classification based on color and texture information of off-road images. It uses a neural network classifier and wavelet features. We exploit the wavelet mean and energy features extracted from multi-channel wavelet transformed images and also utilize the terrain class spatial coordinates of images to include additional features. By comparing the classification performance according to applied features, the experimental results show that the proposed algorithm has a promising result and potential possibilities for autonomous navigation.

THREE-DIMENSIONAL COMPUTED TOMOGRAPHY FOR EVALUATION AND PLANNING OF ORAL AND MAXILLOFACIAL SURGERY ; REPORT OF CASES (3차원 입체영상 CT의 구강외과 영역에서의 활용)

  • Kim, Jin;Ro, Hong-Sup
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.19 no.4
    • /
    • pp.343-350
    • /
    • 1997
  • Diagnosis of maxillofacial lesions is very difficult. Recent developments in computed tomography enable the production of three dimnesional images of complex anatomical structures from a series of conventional computed tomographic sections. Methods of three-dimensional analysis of computed tomographic images have recently been described. Mostly, reports have concentrated on applications relative to congenital deformities. In this report, one method of three dimensional reformatting is reviwes. Images formed by this method have solid surface appearance and can be color enhanced and manipulated to isolate anatomic structures of interest. The program allows tissue densitis, volumes, and distances. This report emphasizes maxillofacial applications other than those previously reported in the surgical and radiological literature.

  • PDF

The Detection of Esophagitis by Using Back Propagation Network Algorithm

  • Seo, Kwang-Wook;Min, Byeong-Ro;Lee, Dae-Weon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1873-1880
    • /
    • 2006
  • The results of this study suggest the use of a Back Propagation Network (BPN) algorithm for the detection of esophageal erosions or abnormalities - which are the important signs of esophagitis - in the analysis of the color and textural aspects of clinical images obtained by endoscopy. The authors have investigated the optimization of the learning condition by the number of neurons in the hidden layer within the structure of the neural network. By optimizing learning parameters, we learned and have validated esophageal erosion images and/or ulcers functioning as the critical diagnostic criteria for esophagitis and associated abnormalities. Validation was established by using twenty clinical images. The success rates for detection of esophagitis during calibration and during validation were 97.91% and 96.83%, respectively.

Harris Corner Detection for Eyes Detection in Facial Images

  • Navastara, Dini Adni;Koo, Kyung-Mo;Park, Hyun-Jun;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.373-376
    • /
    • 2013
  • Nowadays, eyes detection is required and considered as the most important step in several applications, such as eye tracking, face identification and recognition, facial expression analysis and iris detection. This paper presents the eyes detection in facial images using Harris corner detection. Firstly, Haar-like features for face detection is used to detect a face region in an image. To separate the region of the eyes from a whole face region, the projection function is applied in this paper. At the last step, Harris corner detection is used to detect the eyes location. In experimental results, the eyes location on both grayscale and color facial images were detected accurately and effectively.

  • PDF

Noise Removal for Level Set based Flower Segmentation (레벨셋 기반 꽃 분할을 위한 노이즈 제거)

  • Park, Sang Cheol;Oh, Kang Han;Na, In Seop;Kim, Soo Hyung;Yang, Hyung Jeong;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.1 no.2
    • /
    • pp.34-39
    • /
    • 2012
  • In this paper, post-processing step is presented to remove noises and develop a fully automated scheme to segment flowers in natural scene images. The scheme to segment flowers using a level set algorithm in the natural scene images produced unexpected and isolated noises because the level set relies only on the color and edge information. The experimental results shows that the proposed method successfully removes noises in the foreground and background.

  • PDF