• Title/Summary/Keyword: color images

Search Result 2,715, Processing Time 0.025 seconds

Content-based Image Retrieval using LBP and HSV Color Histogram (LBP와 HSV 컬러 히스토그램을 이용한 내용 기반 영상 검색)

  • Lee, Kwon;Lee, Chulhee
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.372-379
    • /
    • 2013
  • In this paper, we proposed a content-based image retrieval algorithm using local binary patterns and HSV color histogram. Images are retrieved using image input in image retrieval system. Many researches are based on global feature distribution such as color, texture and shape. These techniques decrease the retrieval performance in images which contained background the large amount of image. To overcome this drawback, the proposed method extract background fast and emphasize the feature of object by shrinking the background. The proposed method uses HSV color histogram and Local Binary Patterns. We also extract the Local Binary Patterns in quantized Hue domain. Experimental results show that the proposed method 82% precision using Corel 1000 database.

The Improved Binary Tree Vector Quantization Using Spatial Sensitivity of HVS (인간 시각 시스템의 공간 지각 특성을 이용한 개선된 이진트리 벡터양자화)

  • Ryu, Soung-Pil;Kwak, Nae-Joung;Ahn, Jae-Hyeong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.21-26
    • /
    • 2004
  • Color image quantization is a process of selecting a set of colors to display an image with some representative colors without noticeable perceived difference. It is very important in many applications to display a true color image in a low cost color monitor or printer. The basic problem is how to display 256 colors or less colors, called color palette, In this paper, we propose improved binary tree vector quantization based on spatial sensitivity which is one of the human visual properties. We combine the weights based on the responsibility of human visual system according to changes of three Primary colors in blocks of images with the process of splitting nodes using eigenvector in binary tree vector quantization. The test results show that the proposed method generates the quantized images with fine color and performs better than the conventional method in terms of clustering the similar regions. Also the proposed method can get the better result in subjective quality test and WSNR.

Study on an Extraction Method for a Fuel Rod Image and a Visualization of the Color Information in a Sectional Image of a Spent Fuel Assembly (사용후핵연료집합체 영상에서 핵연료봉 영상 추출방법과 색상정보의 가시화에 관한 연구)

  • Jang, Ji-Woon;Shin, Hee-Sung;Youn, Cheung;Kim, Ho-Dong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.432-441
    • /
    • 2007
  • Image processing methods for an extraction of a nuclear fuel rod image and visualization methods of the RGB color data were studied with a sectional image of spent fuel assembly. The fuel rod images could be extracted by using a histogram analysis, an edge detection and RGB rotor data. In these results, a size of the spent fuel assembly could be measured by using a histogram analysis method and a shape of the spent fuel rod could be observed by using an edge detection method. Finally, a various analyses were established for status of the spent fuel assembly by realized various 3D images for the color data in an image of a spent fuel assembly.

Robust Skin Area Detection Method in Color Distorted Images (색 왜곡 영상에서의 강건한 피부영역 탐지 방법)

  • Hwang, Daedong;Lee, Keunsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.350-356
    • /
    • 2017
  • With increasing attention to real-time body detection, active research is being conducted on human body detection based on skin color. Despite this, most existing skin detection methods utilize static skin color models and have detection rates in images, in which colors are distorted. This study proposed a method of detecting the skin region using a fuzzy classification of the gradient map, saturation, and Cb and Cr in the YCbCr space. The proposed method, first, creates a gradient map, followed by a saturation map, CbCR map, fuzzy classification, and skin region binarization in that order. The focus of this method is to rigorously detect human skin regardless of the lighting, race, age, and individual differences, using features other than color. On the other hand,the borders between these features and non-skin regions are unclear. To solve this problem, the membership functions were defined by analyzing the relationship between the gradient, saturation, and color features and generate 108 fuzzy rules. The detection accuracy of the proposed method was 86.35%, which is 2~5% better than the conventional method.

The 2-Phase Image Retrieval Technique using The Color and Shape Information (색상과 모양 정보를 이용한 2단계 영상 검색 기법)

  • 김봉기;오해석
    • Journal of Korea Multimedia Society
    • /
    • v.1 no.2
    • /
    • pp.173-182
    • /
    • 1998
  • As a result of remarkable developments in multimedia technology, the image database system that can efficiently retrieve image data becomes a core technology of information-oriented society. In this paper, we proposed the 2-phase Image Retrieval System considering both color and shape information as the method of image features extraction for content-based image data retrieval. At the first level, to get color information, with improving and extending the indexing method using color distribution characteristic suggested by Striker et al., i.e. the indexing method considering local color distribution characteristics, the system roughly classifies images through the improved method. At the second level, the system finally retrieves the most similar image from the image queried by the user using the shape information about the image groups classified at the first level. To extract the shape information, we use the Improved Moment Invariants (IMI) that manipulates only the pixels on the edges of objects in order to overcome two main problems of the existing Moment Invariant methods large amount of processing and rotation sensitiveness which can frequently be seen in the Directive Histogram Intersection technique suggested by Jain et al. Experiments have been conducted on 300 automobile images. And we could obtain the more improved results through the comparative test with other methods.

  • PDF

A Setting of Initial Cluster Centers and Color Image Segmentation Using Superpixels and Fuzzy C-means(FCM) Algorithm (슈퍼픽셀과 FCM을 이용한 클러스터 초기값 설정 및 칼라영상분할)

  • Lee, Jeong-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.761-769
    • /
    • 2012
  • In this paper, a setting method of initial cluster centers and color image segmentation using superpixels and Fuzzy C-means(FCM) algorithm is proposed. Generally, the FCM can be widely used to segment color images, and an element is assigned to any cluster with each membership values in the FCM. However the algorithm has a problem of local convergence by determining the initial cluster centers. So the selection of initial cluster centers is very important, we proposed an effective method to determine the initial cluster centers using superpixels. The superpixels can be obtained by grouping of some pixels having similar characteristics from original image, and it is projected $La^*b^*$ feature space to obtain the initial cluster centers. The proposed method can be speeded up because number of superpixels are extremely smaller than pixels of original image. To evaluate the proposed method, several color images are used for computer simulation, and we know that the proposed method is superior to the conventional algorithm by the experimental results.

The Walkers Tracking Algorithm using Color Informations on Multi-Video Camera (다중 비디오카메라에서 색 정보를 이용한 보행자 추적)

  • 신창훈;이주신
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1080-1088
    • /
    • 2004
  • In this paper, the interesting moving objects tracking algorithm using color information on Multi-Video camera against variance of intensity, shape and background is proposed. Moving objects are detected by using difference image method and integral projection method to background image and objects image only with hue area, after converting RGB color coordination of image which is input from multi-video camera into HSI color coordination. Hue information of the detected moving area are segmented to 24 levels from $0^{\circ}$ to $360^{\circ}$. It is used to the feature parameter of the moving objects that are three segmented hue levels with the highest distribution and difference among three segmented hue levels. To examine propriety of the proposed method, human images with variance of intensity and shape and human images with variance of intensity, shape and background are targeted for moving objects. As surveillance results of the interesting human, hue distribution level variation of the detected interesting human at each camera is under 2 level, and it is confirmed that the interesting human is tracked and surveilled by using feature parameters at cameras, automatically.

Color Image Analysis of Histological tissue Sections (해부병리조직에 대한 칼라 영상분석)

  • Choe, Heung-Guk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.1
    • /
    • pp.253-260
    • /
    • 1999
  • In this paper, we suggest a new direct method for mage segmentation using texture and color information combined through a multivariate linear discriminant algorithm. The color texture is computed in nin 3${\times}$3 masks obtained from each 3${\times}$3${\times}$3 spatio-spectral neighborhood in the image using the classical haralick and Pressman texture features. Among these 9${\times}$28 texture features the best set was extracted from a training set. The resulting set of 10 features were used to segment an image into four different regions. The resulting segmentation was Compared to classical color and texture segmentation methods using both box classifiers and maximum likelihood classification. It compared favourably on the test image from a Fastred-Lightgreen stained prostatic histological tissue section based on visual inspection. The classification accuracy of 97.5% for the new method obtained on the training data was also among the best of the tested methods. If these results hold for a larger set of images, this method should be a useful tool for segmenting images where both color and texture are relevant for the segmentation process.

  • PDF

Environment-Adaptive Image Segmentation Using Color Invariants (칼라 불변량을 이용한 환경 적응적인 영상 분할)

  • Jang, Seok-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.71-78
    • /
    • 2010
  • Even though various types of image segmentation methods have been extensively introduced, robustly segmenting images to environmental conditions such as illumination changes, shading, highlight, etc, has been known to be a very difficult task. To resolve the problem in some degree, we propose in this paper an environment-adaptive image segmentation approach using color invariants. The suggested method first introduces several color invariants like W, C, U, N, and H, and automatically measures environmental conditions in which images are captured. It then chooses the most adequate color invariant to environmental factors, and effectively extracts edges using the selected invariant. Experimental results show that the proposed method can robustly perform edge-based segmentation rather than existing methods. We expect that our method will be useful in many real applications which require edge-based image segmentation.

Improved face detection method at a distance with skin-color and variable edge-mask filtering (피부색과 가변 경계마스크 필터를 이용한 원거리 얼굴 검출 개선 방법)

  • Lee, Dong-Su;Yeom, Seok-Won;Kim, Shin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2A
    • /
    • pp.105-112
    • /
    • 2012
  • Face detection at a distance faces is very challenging since images are often degraded by blurring and noise as well as low resolution. This paper proposes an improved face detection method with AdaBoost filtering and sequential testing stages with color and shape information. The conventional AdaBoost filter detects face regions but often generates false alarms. The face detection method is improved by adopting sequential testing stages in order to remove false alarms. The testing stages comprise skin-color test and variable edge-mask filtering. The skin-color filtering is composed of two steps, which involve rectangular window regions and individual pixels to generate binary face clusters. The size of the variable edge-mask is determined by the ellipse which is estimated from the face cluster. The validation of the horizontal and vertical ratio of the mask is also investigated. In the experiments, the efficacy of the proposed algorithm is proved by images captured by a CCTV and a smart-phone