• Title/Summary/Keyword: color images

Search Result 2,708, Processing Time 0.036 seconds

An MRF-Based Texture Segmentation Using Genetic Algorithm (유전자 알고리즘을 이용한 MRF기반의 Texture분할)

  • Lee, Kyung-Mi;Kim, Sang-Kyoon;Kim, Hang-Joon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2713-2724
    • /
    • 1998
  • This paper proposes a new method for the parameter estimation in Markov Random Field(MRF) model of textured color images. The MRF models allow an image region to bel described using a finite number of parameters that characterize spatial interactionsl within and between bands of al color image. An important problem is estimation of the parameters since the randorn field model-based textured color image is the mostly parametric images of natural scenes to verify the validit of the proposed method proves that the method is not affected by the size of the image and shows well-segmented images.

  • PDF

Shifted Histogram Matching Algorithm for Image Retrieval (영상 검색을 위한 Shifted 히스토그램 정합 알고리즘)

  • Yoo, Gi-Hyoung;Yoo, Seung-Sun;Youk, Sang-Jo;Park, Gil-Cheol
    • Convergence Security Journal
    • /
    • v.7 no.1
    • /
    • pp.107-113
    • /
    • 2007
  • This paper proposes the shifted histogram method (SHM), for histogram-based image retrieval based on the dominant colors in images. The histogram-based method is very suitable for color image retrieval because retrievals are unaffected by geometrical changes in images, such as translation and rotation. Images with the same visual information, but with shifted color intensity, may significantly degrade if the conventional histogram intersection method (HIM) is used. To solve this problem, we use the shifted histogram method (SHM). Our experimental results show that the shifted histogram method has significant higher retrieval performance than the standard histogram method.

  • PDF

Color Correction Using Chromaticity of Highlight Region in Multi-Scaled Retinex

  • Jang, In-Su;Park, Kee-Hyon;Ha, Yeong-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.59-62
    • /
    • 2009
  • In general, as a dynamic range of digital still camera is narrower than a real scene‘s, it is hard to represent the shadow region of scene. Thus, multi-scaled retinex algorithm is used to improve detail and local contrast of the shadow region in an image by dividing the image by its local average images through Gaussian filtering. However, if the chromatic distribution of the original image is not uniform and dominated by a certain chromaticity, the chromaticity of the local average image depends on the dominant chromaticity of original image, thereby the colors of the resulting image are shifted to a complement color to the dominant chromaticity. In this paper, a modified multi-scaled retinex method to reduce the influence of the dominant chromaticity is proposed. In multi-scaled retinex process, the local average images obtained by Gaussian filtering are divided by the average chromaticity values of the original image in order to reduce the influence of dominant chromaticity. Next, the chromaticity of illuminant is estimated in highlight region and the local average images are corrected by the estimated chromaticity of illuminant. In experiment, results show that the proposed method improved the local contrast and detail without color distortion.

  • PDF

Reduced Reference Quality Metric for Synthesized Virtual Views in 3DTV

  • Le, Thanh Ha;Long, Vuong Tung;Duong, Dinh Trieu;Jung, Seung-Won
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1114-1123
    • /
    • 2016
  • Multi-view video plus depth (MVD) has been widely used owing to its effectiveness in three-dimensional data representation. Using MVD, color videos with only a limited number of real viewpoints are compressed and transmitted along with captured or estimated depth videos. Because the synthesized views are generated from decoded real views, their original reference views do not exist at either the transmitter or receiver. Therefore, it is challenging to define an efficient metric to evaluate the quality of synthesized images. We propose a novel metric-the reduced-reference quality metric. First, the effects of depth distortion on the quality of synthesized images are analyzed. We then employ the high correlation between the local depth distortions and local color characteristics of the decoded depth and color images, respectively, to achieve an efficient depth quality metric for each real view. Finally, the objective quality metric of the synthesized views is obtained by combining all the depth quality metrics obtained from the decoded real views. The experimental results show that the proposed quality metric correlates very well with full reference image and video quality metrics.

Analysis of Color Visualization in High Dynamic Range Image (높은 동적 범위 영상에서 색상 시각화 분석)

  • Lee, Yong-Hwan;Kim, Heung-Jun;Kim, Bong-Gi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.705-708
    • /
    • 2015
  • High dynamic range (HDR) imaging is a techniques used in imaging to reproduce a greater dynamic range of luminosity than is possible with standard digital imaging. Tone mapping of HDR images for realistic display is commonly studied. However, scientific visualization of HDR image for analysis of scene luminance has much less attention. In this paper, we present and implement a simple approach for the reproduction and visualization of color information in HDR images. We attempt several simple color visualizing functions, and estimate their effectiveness through the evaluation factors with common HDR images.

  • PDF

Improved Classification of Cancerous Histopathology Images using Color Channel Separation and Deep Learning

  • Gupta, Rachit Kumar;Manhas, Jatinder
    • Journal of Multimedia Information System
    • /
    • v.8 no.3
    • /
    • pp.175-182
    • /
    • 2021
  • Oral cancer is ranked second most diagnosed cancer among Indian population and ranked sixth all around the world. Oral cancer is one of the deadliest cancers with high mortality rate and very less 5-year survival rates even after treatment. It becomes necessary to detect oral malignancies as early as possible so that timely treatment may be given to patient and increase the survival chances. In recent years deep learning based frameworks have been proposed by many researchers that can detect malignancies from medical images. In this paper we have proposed a deep learning-based framework which detects oral cancer from histopathology images very efficiently. We have designed our model to split the color channels and extract deep features from these individual channels rather than single combined channel with the help of Efficient NET B3. These features from different channels are fused by using feature fusion module designed as a layer and placed before dense layers of Efficient NET. The experiments were performed on our own dataset collected from hospitals. We also performed experiments of BreakHis, and ICML datasets to evaluate our model. The results produced by our model are very good as compared to previously reported results.

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

Effects of Natural Aroma Fragrance on Fashion Images of Galchon (천연 아로마 향이 갈천의 패션이미지에 미치는 영향)

  • Yang, Youngae;Wu, Yue;Yi, Eunjou
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.1
    • /
    • pp.180-199
    • /
    • 2021
  • This study investigated natural aroma fragrance on the fashion image of Galchon, a traditional natural dyeing textile made with immature persimmon from the Jeju area, Korea. Nine fabric pairs consisting of differently colored cotton and silk Galchon with various tones and fabric types were used for subjective evaluation. Thirty five female college students evaluated the specimens using a 7-point scale questionnaire for fashion image-related adjectives. A specimen with three different presentation types that included fabric without fragrance (FO), fabric with citrus fragrance, and fabric with chamaecyparis (FCP) were randomly provided to a subject. As a result, color variables of Galchon were found to be the primary influence on fashion images for both cotton and silk Galchon that showed interaction effects with presentation types. The citrus fragrance increased the feeling of 'Active' while chamaecyparis tended to contribute to a stronger perception of 'Elegance' for cotton Galchon. Finally, these results were used to develop prediction models for fashion images of Galchon that employed color variables and presentation types.

Feature based Pre-processing Method to compensate color mismatching for Multi-view Video (다시점 비디오의 색상 성분 보정을 위한 특징점 기반의 전처리 방법)

  • Park, Sung-Hee;Yoo, Ji-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2527-2533
    • /
    • 2011
  • In this paper we propose a new pre-processing algorithm applied to multi-view video coding using color compensation algorithm based on image features. Multi-view images have a difference between neighboring frames according to illumination and different camera characteristics. To compensate this color difference, first we model the characteristics of cameras based on frame's feature from each camera and then correct the color difference. To extract corresponding features from each frame, we use Harris corner detection algorithm and characteristic coefficients used in the model is estimated by using Gauss-Newton algorithm. In this algorithm, we compensate RGB components of target images, separately from the reference image. The experimental results with many test images show that the proposed algorithm peformed better than the histogram based algorithm as much as 14 % of bit reduction and 0.5 dB ~ 0.8dB of PSNR enhancement.

DNN Based Multi-spectrum Pedestrian Detection Method Using Color and Thermal Image (DNN 기반 컬러와 열 영상을 이용한 다중 스펙트럼 보행자 검출 기법)

  • Lee, Yongwoo;Shin, Jitae
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.361-368
    • /
    • 2018
  • As autonomous driving research is rapidly developing, pedestrian detection study is also successfully investigated. However, most of the study utilizes color image datasets and those are relatively easy to detect the pedestrian. In case of color images, the scene should be exposed by enough light in order to capture the pedestrian and it is not easy for the conventional methods to detect the pedestrian if it is the other case. Therefore, in this paper, we propose deep neural network (DNN)-based multi-spectrum pedestrian detection method using color and thermal images. Based on single-shot multibox detector (SSD), we propose fusion network structures which simultaneously employ color and thermal images. In the experiment, we used KAIST dataset. We showed that proposed SSD-H (SSD-Halfway fusion) technique shows 18.18% lower miss rate compared to the KAIST pedestrian detection baseline. In addition, the proposed method shows at least 2.1% lower miss rate compared to the conventional halfway fusion method.