• Title/Summary/Keyword: color images

Search Result 2,708, Processing Time 0.041 seconds

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

Myocardial Tracer Uptake in SPECT Images after Direct Intracoronary Injection Of TI-201: Comparison with Stress-Reinjection Images (관동맥내 주사 TI-201 SPECT에서 심근 분절의 섭취: 부하-재주사 TI-201 영상과의 비교)

  • Seo, Ji-Hyoung;Kang, Seong-Min;Bae, Jin-Ho;Lee, Yong-Jin;Lee, Sang-Woo;Yoo, Jeong-Soo;Ahn, Byeong-Cheol;Cho, Yong-Geun;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.291-298
    • /
    • 2007
  • Purpose: To investigate the feasibility of TI-201 SPECT with intra coronary injection (lC-I) in the detection of viable myocardium, we have performed SPECT imaging after direct intracoronary injection of TI-201 and images were compared with those of stress-reinjection (Re-I) SPECT. Methods: Fourteen coronary artery disease patients (male 11, mean age 54 years) who had myocardial infarction or demonstrated left ventricular wall motion abnormality on echocardiography were enrolled. Three mCi of TI-201 was injected into both coronary arteries during angiography and images were acquired between 6- and 24-hour after injection. Reinjection imaging with 1 mCi of TI-201 was performed at 4-hour after adenosine stress imaging with 3 mCi of TI-201. Images were interpreted according to 4-grade visual scoring system (grade 0-3). Segments with mild to moderated uptake (${\leq}$grade 1), and upgraded more than one score with reinjection, and were defined as viable myocardium. Results: Image quality was poor in two cases with IC-I. Numbers of non-viable segments were 60 (23.8%) with IC-I, and 38 (15.1%) with Re-I, respectively. Overall agreement for perfusion grade per myocardial segment in each IC-I and Re-I was 76.5%. Overall agreement for viable segment between IC-I and Re-I was 90.5%. Only one out of 38 segments interpreted as non-viable with Re-I were interpretated as viable with IC-I. And 23 out of 214 segments interpreted as viable with Re-I were interpreted as non-viable with IC-I. Conclusion: Intracoronary TI-201 SPECT seemed to be not advantageous over stress-rest reinjection imaging in the assessment of myocardial viability, mainly due to low count statistics at 6-hour or 24-hour delayed time points. The feasibility of intracoronary TI- 201 SPECT is considered to be limited.

Monitoring of the Suspended Sediments Concentration in Gyeonggi-bay Using COMS/GOCI and Landsat ETM+ Images (COMS/GOCI 및 Landsat ETM+ 영상을 활용한 경기만 지역의 부유퇴적물 농 도 변화 모니터링)

  • Eom, Jinah;Lee, Yoon-Kyung;Choi, Jong-Kuk;Moon, Jeong-Eon;Ryu, Joo-Hyung;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • In coastal region, estuaries have complex environments where dissolved and particulate matters are mixed with marine water and substances. Suspended sediment (SS) dynamics in coastal water, in particular, plays a major role in erosion/deposition processes, biomass primary production and the transport of nutrients, micropollutants, heavy metals, etc. Temporal variation in suspended sediment concentration (SSC) can be used to explain erosion/sedimentation patterns within coastal zones. Remotely sensed data can be an efficient tool for mapping SS in coastal waters. In this study, we analyzed the variation in SSC in coastal water using the Geostationary Ocean Color Imager (GOCI) and Landsat Enhanced Thematic Mapper Plus (ETM+) in Gyeonggi-bay. Daily variations in GOCI-derived SSC showed low values during ebb time. Current velocity and water level at 9 and 10 am is 37.6, 28.65 $cm{\cdot}s^{-1}$ and -1.23, -0.61 m respectively. Water level has increased to 1.18 m at flood time. In other words, strong current velocity and increased water level affected high SSC value before flood time but SSC decreased after flood time. Also, we compared seasonal SSC with the river discharge from the Han River and the Imjin River. In summer season, river discharge showed high amount, when SSC had high value near the inland. At this time SSC in open sea had low value. In contrast, river discharge amount from inland showed low value in winter season and, consequently, SSC in the open sea had high value because of northwest monsoon.

A Road Luminance Measurement Application based on Android (안드로이드 기반의 도로 밝기 측정 어플리케이션 구현)

  • Choi, Young-Hwan;Kim, Hongrae;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.49-55
    • /
    • 2015
  • According to the statistics of traffic accidents over recent 5 years, traffic accidents during the night times happened more than the day times. There are various causes to occur traffic accidents and the one of the major causes is inappropriate or missing street lights that make driver's sight confused and causes the traffic accidents. In this paper, with smartphones, we designed and implemented a lane luminance measurement application which stores the information of driver's location, driving, and lane luminance into database in real time to figure out the inappropriate street light facilities and the area that does not have any street lights. This application is implemented under Native C/C++ environment using android NDK and it improves the operation speed than code written in Java or other languages. To measure the luminance of road, the input image with RGB color space is converted to image with YCbCr color space and Y value returns the luminance of road. The application detects the road lane and calculates the road lane luminance into the database sever. Also this application receives the road video image using smart phone's camera and improves the computational cost by allocating the ROI(Region of interest) of input images. The ROI of image is converted to Grayscale image and then applied the canny edge detector to extract the outline of lanes. After that, we applied hough line transform method to achieve the candidated lane group. The both sides of lane is selected by lane detection algorithm that utilizes the gradient of candidated lanes. When the both lanes of road are detected, we set up a triangle area with a height 20 pixels down from intersection of lanes and the luminance of road is estimated from this triangle area. Y value is calculated from the extracted each R, G, B value of pixels in the triangle. The average Y value of pixels is ranged between from 0 to 100 value to inform a luminance of road and each pixel values are represented with color between black and green. We store car location using smartphone's GPS sensor into the database server after analyzing the road lane video image with luminance of road about 60 meters ahead by wireless communication every 10 minutes. We expect that those collected road luminance information can warn drivers about safe driving or effectively improve the renovation plans of road luminance management.

Discrimination between FRC-post and core according to the color difference (색상차이에 따른 FRC-포스트와 코어 사이의 구별)

  • Kim, Jou-Hwe;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.2
    • /
    • pp.75-85
    • /
    • 2015
  • Purpose: The purpose of this study is to evaluate which FRC-posts were more distinguishable from core. Materials and Methods: Nine extracted single-rooted mandibular premolars with similar lengths (${\pm}0.5 mm$) and widths (${\pm}0.5 mm$) were endodontically treated and obturated. One specimen which the three roots were embedded in a cold mounting resin was made. 3 specimens were made by this method. Post spaces were prepared for the following post system: FRC $Postec^{(R)}$ Plus, MACRO-$LOCK^{TM}$ POST $ILLUSION^{TM}$ $XRO^{(R)}$, $Snowpost^{(R)}$. After three different posts were placed in the roots of a specimen, each three specimens received a direct core build-up: $Luxacore^{(R)}$ Dual A3, $Luxacore^{(R)}$ Dual blue, $Filtek^{TM}$ Z350 A1E. Digital images were taken of the post and core with and without air-blowing. We asked to fifty dentists and fifty dental college students which post was more clearly discriminated from the core. Results: In surveys, when core was $Luxacore^{(R)}$ Dual blue, among three types of posts people more easily discriminated the $Snowpost^{(R)}$ from core. When core was $Luxacore^{(R)}$ Dual A3, among three types of posts people similarly more easily discriminated $Snowpost^{(R)}$ from core. When core was $Filtek^{TM}$ Z350 A1E, among three types of posts people more easily discriminated distinguished MACRO-$LOCK^{TM}$ POST $ILLUSION^{TM}$ $XRO^{(R)}$ post from core. People more easily distinguished MACRO-$LOCK^{TM}$ POST $ILLUSION^{TM}$ $XRO^{(R)}$ post from core when temperature was lowered by air-blowing. Conclusion: Ability to discriminate between FRC-post and core is different according to color contrast. MACRO-$LOCK^{TM}$ POST $ILLUSION^{TM}$ $XRO^{(R)}$ posts are more discriminable when temperature is lowered by air-blowing.

Analysis of the Landscape Characteristics of Island Tourist Site Using Big Data - Based on Bakji and Banwol-do, Shinan-gun - (빅데이터를 활용한 섬 관광지의 경관 특성 분석 - 신안군 박지·반월도를 대상으로 -)

  • Do, Jee-Yoon;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.61-73
    • /
    • 2021
  • This study aimed to identify the landscape perception and landscape characteristics of users by utilizing SNS data generated by their experiences. Therefore, how to recognize the main places and scenery appearing on the island, and what are the characteristics of the main scenery were analyzed using online text data and photo data. Text data are text mining and network structural analysis, while photographic data are landscape identification models and color analysis. As a result of the study, First, as a result of frequency analysis of Bakji·Banwol-do topics, we were able to derive keywords for local landscapes such as 'Purple Bridge', 'Doori Village', and location, behavior, and landscape images by analyzing them simultaneously. Second, the network structure analysis showed that the connection between key and undrawn keywords could be more specifically analyzed, indicating that creating landscapes using colors is affecting regional activation. Third, after analyzing the landscape identification model, it was found that artificial elements would be excluded to create preferred landscapes using the main targets of "Purple Bridge" and "Doori Village", and that it would be effective to set a view point of the sea and sky. Fourth, Bakji·Banwol-do were the first islands to be created under the theme of color, and the colors used in artificial facilities were similar to the surrounding environment, and were harmonized with contrasting lighting and saturation values. This study used online data uploaded directly by visitors in the landscape field to identify users' perceptions and objects of the landscape. Furthermore, the use of both text and photographic data to identify landscape recognition and characteristics is significant in that they can specifically identify which landscape and resources they prefer and perceive. In addition, the use of quantitative big data analysis and qualitative landscape identification models in identifying visitors' perceptions of local landscapes will help them understand the landscape more specifically through discussions based on results.

Automatic Text Extraction from News Video using Morphology and Text Shape (형태학과 문자의 모양을 이용한 뉴스 비디오에서의 자동 문자 추출)

  • Jang, In-Young;Ko, Byoung-Chul;Kim, Kil-Cheon;Byun, Hye-Ran
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.4
    • /
    • pp.479-488
    • /
    • 2002
  • In recent years the amount of digital video used has risen dramatically to keep pace with the increasing use of the Internet and consequently an automated method is needed for indexing digital video databases. Textual information, both superimposed and embedded scene texts, appearing in a digital video can be a crucial clue for helping the video indexing. In this paper, a new method is presented to extract both superimposed and embedded scene texts in a freeze-frame of news video. The algorithm is summarized in the following three steps. For the first step, a color image is converted into a gray-level image and applies contrast stretching to enhance the contrast of the input image. Then, a modified local adaptive thresholding is applied to the contrast-stretched image. The second step is divided into three processes: eliminating text-like components by applying erosion, dilation, and (OpenClose+CloseOpen)/2 morphological operations, maintaining text components using (OpenClose+CloseOpen)/2 operation with a new Geo-correction method, and subtracting two result images for eliminating false-positive components further. In the third filtering step, the characteristics of each component such as the ratio of the number of pixels in each candidate component to the number of its boundary pixels and the ratio of the minor to the major axis of each bounding box are used. Acceptable results have been obtained using the proposed method on 300 news images with a recognition rate of 93.6%. Also, my method indicates a good performance on all the various kinds of images by adjusting the size of the structuring element.

A Study on the Possibility of Short-term Monitoring of Coastal Topography Changes Using GOCI-II (GOCI-II를 활용한 단기 연안지형변화 모니터링 가능성 평가 연구)

  • Lee, Jingyo;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1329-1340
    • /
    • 2021
  • The intertidal zone, which is a transitional zone between the ocean and the land, requires continuous monitoring as various changes occur rapidly due to artificial activity and natural disturbance. Monitoring of coastal topography changes using remote sensing method is evaluated to be effective in overcoming the limitations of intertidal zone accessibility and observing long-term topographic changes in intertidal zone. Most of the existing coastal topographic monitoring studies using remote sensing were conducted through high spatial resolution images such as Landsat and Sentinel. This study extracted the waterline using the NDWI from the GOCI-II (Geostationary Ocean Color Satellite-II) data, identified the changes in the intertidal area in Gyeonggi Bay according to various tidal heights, and examined the utility of DEM generation and topography altitude change observation over a short period of time. GOCI-II (249 scenes), Sentinel-2A/B (39 scenes), Landsat 8 OLI (7 scenes) images were obtained around Gyeonggi Bay from October 8, 2020 to August 16, 2021. If generating intertidal area DEM, Sentinel and Landsat images required at least 3 months to 1 year of data collection, but the GOCI-II satellite was able to generate intertidal area DEM in Gyeonggi Bay using only one day of data according to tidal heights, and the topography altitude was also observed through exposure frequency. When observing coastal topography changes using the GOCI-II satellite, it would be a good idea to detect topography changes early through a short cycle and to accurately interpolate and utilize insufficient spatial resolutions using multi-remote sensing data of high resolution. Based on the above results, it is expected that it will be possible to quickly provide information necessary for the latest topographic map and coastal management of the Korean Peninsula by expanding the research area and developing technologies that can be automatically analyzed and detected.

Validation of GOCI-II Products in an Inner Bay through Synchronous Usage of UAV and Ship-based Measurements (드론과 선박을 동시 활용한 내만에서의 GOCI-II 산출물 검증)

  • Baek, Seungil;Koh, Sooyoon;Lim, Taehong;Jeon, Gi-Seong;Do, Youngju;Jeong, Yujin;Park, Sohyeon;Lee, Yongtak;Kim, Wonkook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.609-625
    • /
    • 2022
  • Validation of satellite data products is critical for subsequent analysis that is based on the data. Particularly, performance of ocean color products in turbid and shallow near-land ocean areas has been questioned for long time for its difficulty that stems from the complex optical environment with varying distribution of water constituents. Furthermore, validation with ship-based or station-based measurements has also exhibited clear limitation in its spatial scale that is not compatible with that of satellite data. This study firstly performed validation of major GOCI-II products such as remote sensing reflectance, chlorophyll-a concentration, suspended particulate matter, and colored dissolved organic matter, using the in-situ measurements collected from ship-based field campaign. Secondly, this study also presents preliminary analysis on the use of drone images for product validation. Multispectral images were acquired from a MicaSense RedEdge camera onboard a UAV to compensate for the significant scale difference between the ship-based measurements and the satellite data. Variation of water radiance in terms of camera altitude was analyzed for future application of drone images for validation. Validation conducted with a limited number of samples showed that GOCI-II remote sensing reflectance at 555 nm is overestimated more than 30%, and chlorophyll-a and colored dissolved organic matter products exhibited little correlation with in-situ measurements. Suspended particulate matter showed moderate correlation with in-situ measurements (R2~0.6), with approximately 20% uncertainty.

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.