• Title/Summary/Keyword: color images

Search Result 2,708, Processing Time 0.032 seconds

Manufacture of 3-Dimensional Image and Virtual Dissection Program of the Human Brain (사람 뇌의 3차원 영상과 가상해부 풀그림 만들기)

  • Chung, M.S.;Lee, J.M.;Park, S.K.;Kim, M.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.57-59
    • /
    • 1998
  • For medical students and doctors, knowledge of the three-dimensional (3D) structure of brain is very important in diagnosis and treatment of brain diseases. Two-dimensional (2D) tools (ex: anatomy book) or traditional 3D tools (ex: plastic model) are not sufficient to understand the complex structures of the brain. However, it is not always guaranteed to dissect the brain of cadaver when it is necessary. To overcome this problem, the virtual dissection programs of the brain have been developed. However, most programs include only 2D images that do not permit free dissection and free rotation. Many programs are made of radiographs that are not as realistic as sectioned cadaver because radiographs do not reveal true color and have limited resolution. It is also necessary to make the virtual dissection programs of each race and ethnic group. We attempted to make a virtual dissection program using a 3D image of the brain from a Korean cadaver. The purpose of this study is to present an educational tool for those interested in the anatomy of the brain. The procedures to make this program were as follows. A brain extracted from a 58-years old male Korean cadaver was embedded with gelatin solution, and serially sectioned into 1.4 mm-thickness using a meat slicer. 130 sectioned specimens were inputted to the computer using a scanner ($420\times456$ resolution, true color), and the 2D images were aligned on the alignment program composed using IDL language. Outlines of the brain components (cerebrum, cerebellum, brain stem, lentiform nucleus, caudate nucleus, thalamus, optic nerve, fornix, cerebral artery, and ventricle) were manually drawn from the 2D images on the CorelDRAW program. Multimedia data, including text and voice comments, were inputted to help the user to learn about the brain components. 3D images of the brain were reconstructed through the volume-based rendering of the 2D images. Using the 3D image of the brain as the main feature, virtual dissection program was composed using IDL language. Various dissection functions, such as dissecting 3D image of the brain at free angle to show its plane, presenting multimedia data of brain components, and rotating 3D image of the whole brain or selected brain components at free angle were established. This virtual dissection program is expected to become more advanced, and to be used widely through Internet or CD-title as an educational tool for medical students and doctors.

  • PDF

Simulation and Evaluation of the KOMPSAT/OSMI Radiance Imagery (다목적 실용위성 해색센서 (OSMI)의 복사영상에 대한 모의 및 평가)

  • 반덕로;김용승
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.131-146
    • /
    • 1999
  • The satellite visible data have been successfully applied to study the ocean color. Another ocean color sensor, the Ocean Scanning Multi-spectral Imager (OSMI) on the Korea Multi-Purpose Satellite (KOMPSAT) will be launched in 1999. In order to understand the characteristics of future OSMI images, we have first discussed the simulation models and procedures in detail, and produced typical patterns of radiances at visible bands by using radiative transfer models. The various simulated images of full satellite passes and Korean local areas for different seasons, water types, and the satellite crossing equator time (CET) are presented to illustrate the distribution of each component of radiance (i.e., aerosol scattering, Rayleigh scattering, sun glitter, water-leaving radiance, and total radiance). A method to evaluate the image quality and availability is then developed by using the characteristics of image defined as the Complex Signal Noise Ratio (CSNR). Meanwhile, a series of CSNR images are generated from the simulated radiance components for different cases, which can be used to evaluate the quality and availability of OSMI images before the KOMPSAT will be placed in orbit. Finally, the quality and availability of OSMI images are quantitatively analyzed by the simulated CSNR image. It is hoped that the results would be useful to all scientists who are in charge of OSMI mission and to those who plan to use the data from OSMI.

Illuminant Color Estimation Method Using Valuable Pixels (중요 화소들을 이용한 광원의 색 추정 방법)

  • Kim, Young-Woo;Lee, Moon-Hyun;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.21-30
    • /
    • 2013
  • It is a challenging problem to most of the image processing when the light source is unknown. The color of the light source must be estimated in order to compensate color changes. To estimate the color of the light source, additional assumption is need, so that we assumed color distribution according to the light source. If the pixels, which do not satisfy the assumption, are used, the estimation fails to provide an accurate result. The most popular color distribution assumption is Grey-World Assumption (GWA); it is the assumption that the color in each scene, the surface reflectance averages to gray or achromatic color over the entire images. In this paper, we analyze the characteristics of the camera response function, and the effect of the Grey-World Assumption on the pixel value and chromaticity, based on the inherent characteristics of the light source. Besides, we propose a novel method that detects important pixels for the color estimation of the light source. In our method, we firstly proposed a method that gives weights to pixels satisfying the assumption. Then, we proposed a pixel detection method, which we modified max-RGB method, to apply on the weighted pixels. Maximum weighted pixels in the column direction and row direction in one channel are detected. The performance of our method is verified through demonstrations in several real scenes. Proposed method better accurately estimate the color of the light than previous methods.

Color decomposition method for multi-primary display using 3D-LUT in linearized LAB space (멀티프라이머리 디스플레이를 위한 3D-LUT 색 신호 분리 방법)

  • Kang Dong-Woo;Cho Yang-Ho;Kim Yun-Tae;Choe Won-Hee;Ha Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.9-18
    • /
    • 2005
  • This paper proposes the color decomposition method for multi-primary display (MPD) using a 3-dimensional look-up-table (3D-LUT) in a linearized LAB space. The proposed method decomposes conventional three-primary colors into the multi-primary control values of a display device under constraints of tristimulus match. To reproduce images on the MPD, the color signals should be estimated from a device-independent color space, such as CIEXYZ and CIELAB. In this paper, the linearized LAB space is used due to its linearity and additivity in color conversion. The proposed method constructs the 3-D LUT, which contain gamut boundary information to calculate color signals of the MPD. For the image reproduction, standard RGB or CIEXYZ is transformed to the linearized LAB and then hue and chroma are computed to refer to the 3D-LUT. In the linearlized LAB space, the color signals of a gamut boundary point with the same lightness and hue of an input point are calculated. Also, color signals of a point on gray axis are calculated with the same lightness of an input. With gamut boundary points and input point, color signals of the input points are obtained with the chroma ratio divided by the chroma of the gamut boundary point. Specially, for the hue change, neighboring boundary points are employed. As a result the proposed method guarantees the continuity of color signals and computational efficiency, and requires less amount of memory.

A Study on the Moderating Factors of the Relationship between Artwork Color Series and Visitor Satisfaction in Commercial Spaces (상업공간에서 미술품 색 계열과 방문객 만족도 관계의 조절요인에 관한 연구)

  • Wang, YeunJu;Lee, SeungHyun;Bae, JiHye;Kim, SunYoung
    • Korean Association of Arts Management
    • /
    • no.58
    • /
    • pp.121-152
    • /
    • 2021
  • This study attempted to analyze the effect of the color series of artworks installed as environmental stimuli in commercial spaces on the satisfaction of visitors and the moderating effect of the relationship. To this end, based on the SOR model of Stimulate-Organism-Response applied to burial environment research in the field of environmental psychology, and the preceding research using the SOR model, artwork color series(S)-mood and spaace amenity(O)-A research framework for satisfaction(R) was developed. In the experiment, an online questionnaire was conducted for domestic college students and graduate students by producing images with two conditions depending on the case where warm colors and cold colors were installed for the color series of artworks. As a result of verifying the difference in satisfaction of respondents corresponding to the two conditions through regression analysis, it was found that the warm color(vs. cold color) of the artwork color series induces higher visitor satisfaction. In addition, as a result of verifying the controlling factors of mood and space amenity variables in this relationship of influence, a significant moderating effect was found when the positive mood of warm colors(vs. cold colors) in the artwork color series was felt higher than the average. And, of the four types of space amenity, it was found that a significant moderating effect appeared when only comfort and aesthetics were measured as moderating variables. The result of this study proves that the warm color series of artworks that stimulate the physical environment of commercial spaces has a more positive effect on the satisfaction of visitors than the cold color series, and this is reinforced by positive mood, comfort, and aesthetics. It adds understanding and provides useful implications for marketing strategies for building an effective spatial image.

A Novel Imaging System for Removal of Underwater Distortion using Code V

  • Maik, Vivek;Daniel, Stella;Chrispin Jiji, A.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.141-150
    • /
    • 2017
  • Images obtained from underwater are usually degraded due to the environmental conditions. Some of the typical degradation factors include turbidity and color degradation. These degradations can be attributed to the absorptive and scattering properties of underwater degradation in terms of optical parameters, such as modulation transfer function (MTF), optical transfer function (OTF),point spread function (PSF), and color constancy. In this paper, we use the CODE V optical simulation software to mimic underwater conditions and model the imaging platform, thereby studying various parameters, such as PSF and MTF, and we use the PSF to remove the underwater turbidity. Experimental results show increased performance with the algorithm, compared to other existing methods.

Variational Image Dehazing using a Fuzzy Membership Function

  • Park, Hasil;Park, Jinho;Kim, Heegwang;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.85-92
    • /
    • 2017
  • This paper presents a dehazing method based on a fuzzy membership function and variational method. The proposed algorithm consists of three steps: i) estimate transmission through a pixel-based operation using a fuzzy membership function, ii) refine the transmission using an L1-norm-based regularization method, and iii) obtain the result of haze removal based on a hazy image formation model using the refined transmission. In order to prevent color distortion of the sky region seen in conventional methods, we use a trapezoid-type fuzzy membership function. The proposed method acquires high-quality images without halo artifacts and loss of color contrast.

Detection of Abnormal Region of Skin using Gabor Filter and Density-based Spatial Clustering of Applications with Noise (가버 필터와 밀도 기반 공간 클러스터링을 이용한 피부의 이상 영역 검출)

  • Jeon, Minseong;Cheoi, Kyungjoo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.117-129
    • /
    • 2018
  • In this paper, we suggest a new system that detects abnormal region of skim. First, an illumination elimination algorithm which uses LAB color model is processed on input facial image to obtain robust facial image for illumination, and then gabor filter is processed to detect the reactivity of discontinuity. And last, the density-based spatial clustering of applications with noise(DBSCAN) algorithm is processed to classify areas of wrinkles, dots, and other skin diseases. This method allows the user to check the skin condition of the images taken in real life.

A PHOTOMETRIC STUDY ON THE FORMATION OF THE EARLY TYPE GALAXIES IN NEARBY GALAXY CLUSTERS

  • KIM TAEHYUN;LEE MYUNG GYOON
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.145-148
    • /
    • 2005
  • We present a photometric study of galaxies in the central regions of six nearby galaxy clusters at redshift z=0.0231${\~}$0.0951. We have derived BVI photometry of the galaxies from the CCD images obtained at the Bohyunsan Optical Astronomical Observatory (BOAO) in Korea, and JHKs photometry of the bright galaxies from the 2MASS extended source catalog. Comparing the galaxy photometry results with the simple stellar population model of Bruzual & Charlot (2003) in the optical & NIR color-color diagrams, we have estimated the ages and metallicities of early type galaxies. We have found that the observed galaxies had recent star-formation mostly 5 ${\~}$ 7 Gyrs ago but the spread in age estimation is rather large. The average metallicities are [Fe/H]=0.l${\~}$0.5 dex. These results support the hypothesis that large early type galaxies in clusters are formed via hierarchical merging of smaller galaxies.

License Plate Recognition Using The Morphological Size Distribution Functions (형태학적 크기 분포 함수를 이용한 자동차 번호판 인식)

  • 차상혁;김주영;고광식
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.455-458
    • /
    • 2001
  • In this paper, a new license plate recognition method using the morphological size distribution functions and color images is proposed. The proposed method consists of two steps. The first step is license plate extraction process using the plate color and step edge information in the license plate. The second step is the extraction of character feature vectors using the morphological size distribution functions and character recognition process using the MLP(multilayer perceptron). By the use of morphological size distributions functions, the error that may occur during the character region extraction process is lessened and the recognition performances are improved by the decrease of feature vector dimension.

  • PDF