• Title/Summary/Keyword: color detection

Search Result 1,490, Processing Time 0.026 seconds

Machine's Determination of Main Color and Imbalance in a Drawing for Art Psychotherapy (그림진단을 위한 주제색 및 불균형 판단의 자동화)

  • Bae Jun;Kim Jae Min;Kim Seong-in
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.119-129
    • /
    • 2006
  • Art psychotherapy is widely accepted as an effective tool for diagnosis and treatment of psychological disorders. Important factors for art psychotherapy diagnosis, based on the projection theory that the world of the inner mind appears in drawings, include main color and imbalance of a drawing. This paper develops a system for a machine to determine the main color and the imbalance of a drawing by color recognition and edge detection. Our proposed color recognition procedure adopts NBS(National Bureau of Standards) distance between colors in HVC(Hue, Value, Chroma) color space which is most similar to the human eye's color perception. Our edge detection procedure applies blurring, clustering and transformation to a standard color in a series. Our system considers the numbers of pixels and clusters for each color as a criterion for main color and the frequency of edge coordinates for each region for imbalance. The proposed machine procedure, verified through case studies, can help overcome the subjectivity, ambiguity and uncertainty in human decision involved in art psychotherapy.

Fire Detection using Color and Motion Models

  • Lee, Dae-Hyun;Lee, Sang Hwa;Byun, Taeuk;Cho, Nam Ik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.237-245
    • /
    • 2017
  • This paper presents a fire detection algorithm using color and motion models from video sequences. The proposed method detects change in color and motion of overall regions for detecting fire, and thus, it can be implemented in both fixed and pan/tilt/zoom (PTZ) cameras. The proposed algorithm consists of three parts. The first part exploits color models of flames and smoke. The candidate regions in the video frames are extracted with the hue-saturation-value (HSV) color model. The second part models the motion information of flames and smoke. Optical flow in the fire candidate region is estimated, and the spatial-temporal distribution of optical flow vectors is analyzed. The final part accumulates the probability of fire in successive video frames, which reduces false-positive errors when fire-like color objects appear. Experimental results from 100 fire videos are shown, where various types of smoke and flames appear in indoor and outdoor environments. According to the experiments and the comparison, the proposed fire detection algorithm works well in various situations, and outperforms the conventional algorithms.

Text Detection and Binarization using Color Variance and an Improved K-means Color Clustering in Camera-captured Images (카메라 획득 영상에서의 색 분산 및 개선된 K-means 색 병합을 이용한 텍스트 영역 추출 및 이진화)

  • Song Young-Ja;Choi Yeong-Woo
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.205-214
    • /
    • 2006
  • Texts in images have significant and detailed information about the scenes, and if we can automatically detect and recognize those texts in real-time, it can be used in various applications. In this paper, we propose a new text detection method that can find texts from the various camera-captured images and propose a text segmentation method from the detected text regions. The detection method proposes color variance as a detection feature in RGB color space, and the segmentation method suggests an improved K-means color clustering in RGB color space. We have tested the proposed methods using various kinds of document style and natural scene images captured by digital cameras and mobile-phone camera, and we also tested the method with a portion of ICDAR[1] contest images.

Algorithm of Face Region Detection in the TV Color Background Image (TV컬러 배경영상에서 얼굴영역 검출 알고리즘)

  • Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.672-679
    • /
    • 2011
  • In this paper, detection algorithm of face region based on skin color of in the TV images is proposed. In the first, reference image is set to the sampled skin color, and then the extracted of face region is candidated using the Euclidean distance between the pixels of TV image. The eye image is detected by using the mean value and standard deviation of the component forming color difference between Y and C through the conversion of RGB color into CMY color model. Detecting the lips image is calculated by utilizing Q component through the conversion of RGB color model into YIQ color space. The detection of the face region is extracted using basis of knowledge by doing logical calculation of the eye image and lips image. To testify the proposed method, some experiments are performed using front color image down loaded from TV color image. Experimental results showed that face region can be detected in both case of the irrespective location & size of the human face.

Smoke color analysis of the standard color models for fire video surveillance (화재 영상감시를 위한 표준 색상모델의 연기색상 분석)

  • Lee, Yong-Hun;Kim, Won-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4472-4477
    • /
    • 2013
  • This paper describes the color features of smoke in each standard color model in order to present the most suitable color model for somke detection in video surveillance system. Histogram intersection technique is used to analyze the difference characteristics between color of smoke and color of non smoke. The considered standard color models are RGB, YCbCr, CIE-Lab, HSV, and if the calculated histogram intersection value is large for the considered color model, then the smoke spilt characteristics are not good in that color model. If the calculated histogram intersection value is small, then the smoke spilt characteristics are good in that color model. The analyzed result shows that the RGB and HSV color models are the most suitable for color model based smoke detection by performing respectively 0.14 and 0.156 for histogram intersection value.

Face Region Detection Algorithm using Euclidean Distance of Color-Image (칼라 영상에서 유클리디안 거리를 이용한 얼굴영역 검출 알고리즘)

  • Jung, Haing-sup;Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.79-86
    • /
    • 2009
  • This study proposed a method of detecting the facial area by calculating Euclidian distances among skin color elements and extracting the characteristics of the face. The proposed algorithm is composed of light calibration and face detection. The light calibration process performs calibration for the change of light. The face detection process extracts the area of skin color by calculating Euclidian distances to the input images using as characteristic vectors color and chroma in 20 skin color sample images. From the extracted facial area candidate, the eyes were detected in space C of color model CMY, and the mouth was detected in space Q of color model YIQ. From the extracted facial area candidate, the facial area was detected based on the knowledge of an ordinary face. When an experiment was conducted with 40 color images of face as input images, the method showed a face detection rate of 100%.

  • PDF

Color Code Detection and Recognition Using Image Segmentation Based on k-Means Clustering Algorithm (k-평균 클러스터링 알고리즘 기반의 영상 분할을 이용한 칼라코드 검출 및 인식)

  • Kim, Tae-Woo;Yoo, Hyeon-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1100-1105
    • /
    • 2006
  • Severe distortions of colors in the obtained images have made it difficult for color codes to expand their applications. To reduce the effect of color distortions on reading colors, it will be more desirable to statistically process as many pixels in the individual color region as possible, than relying on some regularly sampled pixels. This process may require segmentation, which usually requires edge detection. However, edges in color codes can be disconnected due tovarious distortions such as zipper effect and reflection, to name a few, making segmentation incomplete. Edge linking is also a difficult process. In this paper, a more efficient approach to reducing the effect of color distortions on reading colors, one that excludes precise edge detection for segmentation, was obtained by employing the k-means clustering algorithm. And, in detecting color codes, the properties of both six safe colors and grays were utilized. Experiments were conducted on 144, 4M-pixel, outdoor images. The proposed method resulted in a color-code detection rate of 100% fur the test images, and an average color-reading accuracy of over 99% for the detected codes, while the highest accuracy that could be achieved with an approach employing Canny edge detection was 91.28%.

  • PDF

FACE DETECTION USING SKIN-COLOR MODEL AND SUPPORT VECTOR MACHINE

  • Seld, Yoko;Yuyama, Ichiro;Hasegawa, Hiroshi;Watanabe, Yu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.592-595
    • /
    • 2009
  • In this paper, we propose a face detection technique for still pictures which sequentially uses a skin-color model and a support vector machine (SVM). SVM is a learning algorithm for solving the classification problem. Some studies on face detection have reported superior results of SVM over neural networks. The SVM method searches for a face in a picture while changing the size of the window. The detection accuracy and the processing time of SVM vary largely depending on the complexity of the background of the picture or the size of the face. Therefore, we apply a face candidate area detection method using a skin-color model as a preprocessing technique. We compared the method using SVM alone with that of the proposed method in respect to face detection accuracy and processing time. As a result, the proposed method showed improved processing time while maintaining a high recognition rate.

  • PDF

Highlight-Detection-Based Color Correction Method for Multiview Images

  • Shao, Feng;Jiang, Gangyi;Yu, Mei;Ho, Yo-Sung
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.448-450
    • /
    • 2009
  • In multiview imaging systems, color correction is adopted to eliminate color inconsistency between views. However, the influence of highlights on color correction has not been considered before. In this letter, a new color correction method based on highlight detection is proposed. The method is designed to treat highlight and highlight-removal regions independently when calculating correction parameters. Finial correction is implemented with a fusion mechanism. Experimental results show that the proposed method can improve objective and subjective correction performance, while achieving better coding performance than other correction methods.

A study of face detection using color component (색상요소를 고려한 얼굴검출에 대한 연구)

  • 이정하;강진석;최연성;김장형
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.240-243
    • /
    • 2002
  • In this paper, we propose a face region detection based on skin-color distribution and facial feature extraction algorithm in color still images. To extract face region, we transform color using general skin-color distribution. Facial features are extracted by edge transformation. This detection process reduces calculation time by a scale-down scanning from segmented region. we can detect face region in various facial Expression, skin-color deference and tilted face images.

  • PDF