• Title/Summary/Keyword: color adjacency

Search Result 11, Processing Time 0.024 seconds

Content-based Image Retrieval Using Color Adjacency and Gradient (칼라 인접성과 기울기를 이용한 내용 기반 영상 검색)

  • 김홍염;이호영;김희수;하영호
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.157-160
    • /
    • 2000
  • This paper proposes a color-based image retrieval method using color adjacency and gradient. In proposed method, both the adjacency of different colors and gradient of a color in homogeneous region are considered as features of an image. The gradient, defined as the maximum distance along the direction with largest change of color, is computed for each pixel to determine whether the center color is similar or different to the neighboring colors. Therefore the problems caused by uniform quantization, which is popularly used at most existing retrieval, can be avoided. And furthermore, the storage of the feature is reduced by the proposed binary representation.

  • PDF

Object-Based Image Retrieval Using Color Adjacency and Clustering Method (컬러 인접성과 클러스터링 기법을 이용한 객체 기반 영상 검색)

  • Lee Hyung-Jin;Park Ki-Tae;Moon Young-Shik
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.31-38
    • /
    • 2005
  • This paper proposes an object-based image retrieval scheme using color adjacency and clustering method. Color adjacency features in boundary regions are utilized to extract candidate blocks of interest from image database and a clustering method is used to extract the regions of interest(ROI) from candidate blocks of interest. To measure the similarity between the query and database images, the histogram intersection technique is used. The color pair information used in the proposed method is robust against translation, rotation, and scaling. Consequently, experimental results have shown that the proposed scheme is superior to existing methods in terms of ANMRR.

Building Recognition using Image Segmentation and Color Features (영역분할과 컬러 특징을 이용한 건물 인식기법)

  • Heo, Jung-Hun;Lee, Min-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.82-91
    • /
    • 2013
  • This paper proposes a building recognition algorithm using watershed image segmentation algorithm and integrated region matching (IRM). To recognize a building, a preprocessing algorithm which is using Gaussian filter to remove noise and using canny edge extraction algorithm to extract edges is applied to input building image. First, images are segmented by watershed algorithm. Next, a region adjacency graph (RAG) based on the information of segmented regions is created. And then similar and small regions are merged. Second, a color distribution feature of each region is extracted. Finally, similar building images are obtained and ranked. The building recognition algorithm was evaluated by experiment. It is verified that the result from the proposed method is superior to color histogram matching based results.

Content-based Image Retrieval Using Color Adjacency and Gradient (칼라 인접성과 기울기를 이용한 내용 기반 영상 검색)

  • Jin, Hong-Yan;Lee, Ho-Young;Kim, Hee-Soo;Kim, Gi-Seok;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.1
    • /
    • pp.104-115
    • /
    • 2001
  • A new content-based color image retrieval method integrating the features of the color adjacency and the gradient is proposed in this paper. As the most used feature of color image, color histogram has its own advantages that it is invariant to the changes in viewpoint and the rotation of the image etc., and the computation of the feature is simple and fast. However, it is difficult to distinguish those different images having similar color distributions using histogram-based image retrieval, because the color histogram is generated on uniformly quantized colors and the histogram itself contains no spatial information. And another shortcoming of the histogram-based image retrieval is the storage of the features is usually very large. In order to prevent the above drawbacks, the gradient that is the largest color difference of neighboring pixels is calculated in the proposed method instead of the uniform quantization which is commonly used at most histogram-based methods. And the color adjacency information which indicates major color composition feature of an image is extracted and represented as a binary form to reduce the amount of feature storage. The two features are integrated to allow the retrieval more robust to the changes of various external conditions.

  • PDF

Color-Based Image Retrieval and Lacalization using Color Vector Angle (칼라 벡터각을 이용한 칼라 기반 영상 검색과 위치 추정)

  • 이호영;이호근;김윤태;남재열;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.6B
    • /
    • pp.810-819
    • /
    • 2001
  • 칼라가 물체 인식에 아주 효율적인 단서를 제공하지만 칼라 분포는 시청 조건과 카메라의 위치에 아주 큰 영향을 받는다. 생김새와 모양의 변화에 의한 칼라 분포 변화 문제를 해결하기 위해 본 논문에서는 밝기 값의 변화에 영향을 받지 않고, 색상(hue) 성분에 민감한 칼라 벡터각(color vector angle)을 이용하여 칼라 에지를 추출한 후, 영상의 화소들을 평탄 화소와 에지 화소로 구분하여 칼라 특징 값을 추출하였다. 에지 화소의 경우에는 에지 주위 칼라 쌍의 전체 분포를 HLS 색좌표계의 비균일 양자화를 통해 칼라 인접 히스토그램(color adjacency histogram)으로 표현하고, 평탄 화소의 경우에는 HLS 색좌표계의 비균일 양자화와 칼라 벡터각 균일 양자화를 통해 칼라 벡터각 히스토그램(color vector angle histogram)을 구성하여 공간적인 칼라분포를 표현하였다. 제안한 칼라 히스토그램을 이용하여 영상 검색에 적용하여 성능을 실험한 결과, 작은 빈의 수를 가지는 제안한 방법이 기존의 방법들보다 훨씬 효율적이고, 생김새와 모양의 변화에 아주 강건한 영상 검색이 가능하였고, 기존의 칼라 히스토그램 역투사 방법보다 훨씬 정확한 물체 위치 추정이 가능함을 확인할 수 있었다.

  • PDF

Color Assessment for Mosaic Imagery using HSI Model (HSI모델을 이용한 모자이크 영상의 품질 평가)

  • Woo, Hee-Sook;Noh, Myoung-Jong;Park, June-Ku;Cho, Woo-Sug;Kim, Byung-Guk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • This paper propose color assessment method using HSI model to evaluate quantitative quality of mosaic images by aerial digital frame camera. Firstly, we convert RGB color into HSI model and we extract six pixel information of S and I corresponding to H from adjacency image by using HSI model. Secondly, a method to measure similarity and contrast is proposed and performed for assesment of observation regarding adjacency images. Through these procedure, we could generate four parameters. We could observe that both of the evaluation results by proposed method and the evaluation results by visual were almost similar. This facts support that our method based on several formula can be an objective method to evaluate a quality of mosaic images itself.

Mobile Phone Camera Based Scene Text Detection Using Edge and Color Quantization (에지 및 컬러 양자화를 이용한 모바일 폰 카메라 기반장면 텍스트 검출)

  • Park, Jong-Cheon;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.847-852
    • /
    • 2010
  • Text in natural images has a various and important feature of image. Therefore, to detect text and extraction of text, recognizing it is a studied as an important research area. Lately, many applications of various fields is being developed based on mobile phone camera technology. Detecting edge component form gray-scale image and detect an boundary of text regions by local standard deviation and get an connected components using Euclidean distance of RGB color space. Labeling the detected edges and connected component and get bounding boxes each regions. Candidate of text achieved with heuristic rule of text. Detected candidate text regions was merged for generation for one candidate text region, then text region detected with verifying candidate text region using ectilarity characterization of adjacency and ectilarity between candidate text regions. Experctental results, We improved text region detection rate using completentary of edge and color connected component.

Research on Characterizing Urban Color Analysis based on Tourists-Shared Photos and Machine Learning - Focused on Dali City, China - (관광객 공유한 사진 및 머신 러닝을 활용한 도시 색채 특성 분석 연구 - 중국 대리시를 대상으로 -)

  • Yin, Xiaoyan;Jung, Taeyeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.39-50
    • /
    • 2024
  • Color is an essential visual element that has a significant impact on the formation of a city's image and people's perceptions. Quantitative analysis of color in urban environments is a complex process that has been difficult to implement in the past. However, with recent rapid advances in Machine Learning, it has become possible to analyze city colors using photos shared by tourists. This study selected Dali City, a popular tourist destination in China, as a case study. Photos of Dali City shared by tourists were collected, and a method to measure large-scale city colors was explored by combining machine learning techniques. Specifically, the DeepLabv3+ model was first applied to perform a semantic segmentation of tourist sharing photos based on the ADE20k dataset, thereby separating artificial elements in the photos. Next, the K-means clustering algorithm was used to extract colors from the artificial elements in Dali City, and an adjacency matrix was constructed to analyze the correlations between the dominant colors. The research results indicate that the main color of the artificial elements in Dali City has the highest percentage of orange-grey. Furthermore, gray tones are often used in combination with other colors. The results indicated that local ethnic and Buddhist cultures influence the color characteristics of artificial elements in Dali City. This research provides a new method of color analysis, and the results not only help Dali City to shape an urban color image that meets the expectations of tourists but also provide reference materials for future urban color planning in Dali City.

A Method for Quantitative Quality Assessment of Mosaic Imagery (모자이크 영상의 정량적 품질평가 방법)

  • Oh, Kwan-Young;Jung, Hyung-Sup;Lee, Kwang-Jae;Lee, Ha-Seong
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • The purpose of this paper is to provide a compact overview of the state-of-art image mosaic algorithms in commercial softwares and to propose objective assessment method of that. Among them, several algorithms, widely used and high quality, result in the mosaic image by applying to seven different kinds of seasons of KOMPSAT-2 images and then consequently each result is analyzed visually. Moreover, quality index is suggested to assess the similarity with colors regarding adjacency images and then it is performed by comparing and analyzing the visual and quantitative results. Consequently, we found out the suggested quality index is feasible.

Face Detection in Color Images Based on Skin Region Segmentation and Neural Network (피부 영역 분할과 신경 회로망에 기반한 칼라 영상에서 얼굴 검출)

  • Lee, Young-Sook;Kim, Young-Bong
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.1-11
    • /
    • 2006
  • Many research demonstrations and commercial applications have been tried to develop face detection and recognition systems. Human face detection plays an important role in applications such as access control and video surveillance, human computer interface, identity authentication, etc. There are some special problems such as a face connected with background, faces connected via the skin color, and a face divided into several small parts after skin region segmentation in generally. It can be allowed many face detection techniques to solve the first and second problems. However, it is not easy to detect a face divided into several parts of regions for reason of different illumination conditions in the third problem. Therefore, we propose an efficient modified skin segmentation algorithm to solve this problem because the typical region segmentation algorithm can not be used to. Our algorithm detects skin regions over the entire image, and then generates face candidate regions using our skin segmentation algorithm For each face candidate, we implement the procedure of region merging for divided regions in order to make a region using adjacency between homogeneous regions. We utilize various different searching window sizes to detect different size faces and a face detection classifier based on a back-propagation algorithm in order to verify whether the searching window contains a face or not.

  • PDF