• Title/Summary/Keyword: colony forming inhibitory activity.

Search Result 25, Processing Time 0.018 seconds

In vitro evaluation of octenidine as an antimicrobial agent against Staphylococcus epidermidis in disinfecting the root canal system

  • Chum, Jia Da;Lim, Darryl Jun Zhi;Sheriff, Sultan Omer;Pulikkotil, Shaju Jacob;Suresh, Anand;Davamani, Fabian
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.1
    • /
    • pp.8.1-8.7
    • /
    • 2019
  • Objectives: Irrigants are imperative in endodontic therapy for the elimination of pathogens from the infected root canal. The present study compared the antimicrobial efficacy of octenidine dihydrochloride (OCT) with chlorhexidine (CHX) and sodium hypochlorite (NaOCl) against Staphylococcus epidermidis (S. epidermidis) for root canal disinfection. Materials and Methods: The minimum inhibitory concentration (MIC) was obtained using serial dilution method. The agar diffusion method was then used to determine the zones of inhibition for each irrigant. Lastly, forty 6-mm dentin blocks were prepared from human mandibular premolars and inoculated with S. epidermidis. Samples were randomly divided into 4 groups of 10 blocks and irrigated for 3 minutes with saline (control), 2% CHX, 3% NaOCl, or 0.1% OCT. Dentin samples were then collected immediately for microbial analysis, including an analysis of colony-forming units (CFUs). Results: The MICs of each tested irrigant were 0.05% for CHX, 0.25% for NaOCl, and 0.0125% for OCT. All tested irrigants showed concentration-dependent increase in zones of inhibition, and 3% NaOCl showed the largest zone of inhibition amongst all tested irrigants (p < 0.05). There were no significant differences among the CFU measurements of 2% CHX, 3% NaOCl, and 0.1% OCT showing complete elimination of S. epidermidis in all samples. Conclusions: This study showed that OCT was comparable to or even more effective than CHX and NaOCl, demonstrating antimicrobial activity at low concentrations against S. epidermidis.

Comparison of In vitro Anti-Biofilm Activities of Natural Plant Extracts Against Environment Harmful Bacteria (천연물 성분을 이용한 환경 유해미생물의 biofilm 생성 저해능 비교에 관한 연구)

  • Kang, Eun-Jin;Park, Ji Hun;Jin, Seul;Kim, Young-Rok;Do, Hyung-Ki;Yang, Woong-Suk;Lee, Jae-Yong;Hwang, Cher-Won
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.225-233
    • /
    • 2019
  • In this study, we investigated the in vitro anti-biofilm activities of plant extracts of chives (Allium tuberosum), garlic (Allium sativum), and radish (Raphanus sativus L.) against environment harmful bacteria (gram-positive Staphylococcus aureus and, gram-negative Salmonella typhimurium and Escherichia coli O157:H7). In the paper disc assay, garlic extracts exhibited the highest anti-biofilm activity. The Minimal Inhibitory Concentration (MIC) of all plant extracts was generally higher for gram-negative bacteria than it was for gram-positive bacteria. Gram-negative bacteria were more resistant to plant extracts. The tetrazolium dye (XTT) assay revealed that, each plant extract exhibited a different anti-biofilm activity at the MIC value depending on the pathogen involved. Among the plant extracts tested, garlic extracts (fresh juice and powder) effectively reduced the metabolic activity of the cells of food-poisoning bacteria in biofilms. These anti-biofilm activities were consistent with the results obtained through light microscopic observation. Though the garlic extract reduced biofilm formation for all pathogens tested, to elucidate whether this reduction was due to antimicrobial effects or anti-biofilm effects, we counted the colony forming units of pathogens in the presence of the garlic extract and a control antimicrobial drug. The garlic extract inhibited the E. coli O157:H7 biofilm effectively compared to the control antimicrobial drug ciprofloxacin; however, it did not inhibit S. aureus biofilm significantly compared to ciprofloxacin. In conclusion, garlic extracts could be used as natural food preservatives to prevent the growth of foodborne pathogens and elongater the shelf life of processed foods.

Extension of Storage Time of Chicon using Nanoparticle of Machilus thunbergii Extracts (후박추출물의 나노입자화를 통한 치콘의 저장기간 연장)

  • Kwon, Min-Chul;Han, Jae-Gun;Ha, Ji-Hye;Jin, Ling;Choi, Geun-Pyo;Park, Uk-Yeon;Lee, Dal-Ho;Hyeon-Yong, Lee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.5
    • /
    • pp.320-325
    • /
    • 2008
  • Machilus thunbergii has been showed relation to antimicrobial activity on minimal inhibitoty concentration (MIC) and colony forming inhibitory activity (CFIA) test, so that can be used to food preservatives for green vegetable. Nanoparticles has been made of edible materials. 80% of the nanoparticles has been characterized by image analyser and electron microscopy, showing in the range under 300 nm diameter. The sprayed nanoparticles remained on the surface of chicon even after washing by dilution water, then activate biological activities for storage of chicon with storing and releasement system of extracts. Chicon treated nanoparticle has been kept fresh condition about 2 months longer than 3 weeks of the non-treated control. It can be tell that treatment with nanoparticle of M. thunbergii extracts extends storage time of chicon possibly by inhibition of ethylene production through efficiency control on cell breathing.

Production of fermented apple juice using Lactobacillus plantarum JBE245 isolated from Korean traditional Meju (메주에서 분리한 Lactobacillus plantarum JBE245를 이용한 사과 발효 음료 제조)

  • Heo, Jun;Park, Hae-Suk;Uhm, Tai-Boong
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.445-453
    • /
    • 2016
  • Eighty-four strains of lactic acid bacteria were isolated from Korean fermented foods for the production of fermented apple juice. Among these strains, the JBE245 strain that showed rapid growth and food functionality was selected and identified as Lactobacillus plantarum. This strain reached the stationary phase after 24 h fermentation at $30^{\circ}C$ with $1.5{\times}10^8$ colony forming unit (CFU)/mL of viable cells, and maintained its viability levels even after 14 days of storage. During fermentation, the ${\alpha}-glucosidase$ inhibitory activity (40.4%), total polyphenol content (583.6 mg gallic acid equivalent (GAE)/mL), and 2,2-diphenyl-l-picryl-hydrazyl hydrate (DPPH) radical scavenging activity (52%) were increased. As judged by a sensory test, the overall preference for the fermented juice (4.22) was comparable to that for the unfermented juice (4.72), indicating that fermentation does not significantly affect the sensory characteristics of apple juice. Consequently, the fermented beverage containing L. plantarum JBE245 and apple juice is a promising functional health food.

EFFECT OF ENAMEL MATRIX DERIVATIVE (EMD, $EMDOGAIN^{(R)}$) ON THE DIFFERENTIATION OF CULTURED HUMAN PERIODONTAL LIGAMENT CELLS AND MESENCHYMAL STEM CELLS (배양된 사람 치주인대세포와 골수유래간엽줄기세포의 분화에 미치는 법랑기질유도체 (Enamel Matrix Derivative, EMD)의 영향)

  • Park, Sang-Gyu;Jue, Seong-Suk;Kwon, Yong-Dae;Choi, Byung-Joon;Kim, Young-Ran;Lee, Baek-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.4
    • /
    • pp.281-286
    • /
    • 2009
  • Introduction: Enamel matrix derivative (EMD) is a protein which is secreted by Hertwig root sheath and plays a major role in the formation of cementum and attachment of peridontium. Several studies have shown that EMD promoted the proliferation and differentiation of preosteoblasts, osteoblasts and periodontal ligament cells in vitro: however, reports showing the inhibition of osteogenic differentiation by EMD also existed. This study was designed to simultaneously evaluate the effect of EMD on the two cell lines (human mesenchymal stem cells: hMSC, human periodontal ligament derived fibroblasts: hPDLCs) by means of quantitative analysis of some bone related matrices (Alkaline phosphatase : ALP, osteopontin ; OPN, osteocalcin ; OC). Materials and Methods: hMSCs and hPDLCs were expanded and cells in the 4${\sim}$6 passages were adopted to use. hMSc and hPDLCs were cultured during 1,2,7, and 14 days with 0, 50 and 100 ${\mu}g/ml$ of EMD, respectively. ALP activity was assessed by SensoLyte ALP kit and expressed as values of the relative optical density. Among the matrix proteins of the bony tissue, OC and OPN were assessed and quantification of these proteins was evaluated by means of human OC immunoassay kit and human OPN assay kit, respectively. Results: ALP activity maintained without EMD at $1,2^{nd}$ day. The activity increased at $7^{th}$ day but decreased at $14^{th}$ day. EMD increased the activity at $14^{th}$ day in the hPDLCs culture. In the hMSCs, rapid decrease was noted in $7^{th}$ and $14^{th}$ days without regard to EMD concentrations. Regarding the OPN synthesis in hPDLCs, marked decrease of OPN was noted after EMD application. Gradual decrease tendency of OPN was shown over time. In hMSCs, marked decrease of OPN was also noted after EMD application. Overall concentration of OPN was relatively consistent over time than that in hPDLCs. Regarding the OC synthesis, in both of hPDLCs and hMSCs, inhibition of OC formation was noted after EMD application in the early stages but EMD exerted minimal effect at the later stages. Conclusion: In this experimental condition, EMD seemed to play an inhibitory role during the differentiation of hMSCs and hPDLCs in the context of OC and OPN formation. In the periodontium, there are many kinds of cells contributing to the regeneration of oral tissue. EMD enhanced ALP activity in hPDLCs rather than in hMSCs and this may imply that EMD has a positive effect on the differentiation of cementoblasts compared with the effect on hMSCs. The result of our research was consistent with recent studies in which the authors showed the inhibitory effect of EMD in terms of the differentiation of mineral colony forming cells in vitro. This in vitro study may not stand for all the charateristics of EMD; thus, further studies involving many other bone matrices and cellular attachment will be necessary.