• 제목/요약/키워드: colony blot

검색결과 87건 처리시간 0.029초

Inhibition of phosphodiesterase 4D decreases the malignant properties of DLD-1 colorectal cancer cells by repressing the AKT/mTOR/Myc signaling pathway

  • Dong Uk Kim;Jehyun Nam;Matthew D. Cha;Sang‑Woo Kim
    • Oncology Letters
    • /
    • 제17권3호
    • /
    • pp.3589-3598
    • /
    • 2019
  • Colorectal cancer (CRC) is a complex disease involving numerous genetic abnormalities. One of the major characteristics of CRC is enhanced Wnt signaling caused by loss-of-function mutations in the adenomatous polyposis coli (APC) gene. Previously, it has been demonstrated that the majority of malignant phenotypes following APC deletion in adult murine small intestines could be rescued when Myc, a downstream target of the Wnt pathway, was deleted. This indicated that Myc is a critical regulator of CRC development following APC loss. Previous studies reported that cyclic adenosine 3',5'-monophosphate (cAMP) can influence the AKT/mammalian target of rapamycin (mTOR) survival pathway in cancer and Myc is a critical downstream molecule of AKT/mTOR signaling. Phosphodiesterase 4D (PDE4D), a member of the cAMP-specific PDE4 family, has been associated with drug resistance in CRC. However, the association between PDE4D and Myc remains unclear. To investigate the potential role of PDE4D in Myc regulation in CRC, the present study evaluated the expression levels of PDE4 subtypes in DLD-1 CRC cells. Additionally, the effects of PDE4 inhibitors on Myc expression and oncogenic properties were analyzed by western blot analysis, reverse transcription-quantitative polymerase chain reaction, colony formation and soft agar assays. It was demonstrated that cAMP/PDE4D signals serve a critical role in regulating Myc expression in DLD-1 CRC cells. Furthermore, PDE4D was identified to be a main hydrolyzer of cAMP and suppression of PDE4D using selective inhibitors of PDE4 increased intracellular cAMP levels, which resulted in a marked decrease in the oncogenic properties of DLD-1 cells, including colony formation, cell proliferation and anchorage-independent growth. Notably, the current data imply that cAMP represses Myc expression via the downregulation of AKT/mTOR signaling, which was abolished by high PDE4D activities in DLD-1 cells. Additionally, a natural polyphenol resveratrol in combination with forskolin elevated the concentration of cAMP and enhanced the expression of Myc and the malignant phenotype of DLD-1 cells, reproducing the effect of known chemical inhibitors of PDE4. In conclusion, the present study identified that cAMP/PDE4D signaling is a critical regulator of Myc expression in DLD-1 and possibly other CRC cells.

환경오염물질 폭로에 따른 인체세포에서의 rpt-1 발현 및 역할의 분석 (Analysis of biological functions of rpt-1 in human cells with exposure to environmental pollutants)

  • 김선영;양재호
    • 한국환경성돌연변이발암원학회지
    • /
    • 제21권2호
    • /
    • pp.164-168
    • /
    • 2001
  • Abel et al. in Germany discovered a new dioxin-responsive gene, which has later been identified as rpt-1 (regulatory protein T-lymphocyte 1). While it is speculated that rpt-1 may play a role in signal transduction and carcinogenesis, its roles and functions remain unknown. The present study attempted to analyze functions of rpt-1 in human epithelial cells following the xenobiotic exposures. While German counterpart analyzed expressionn of rpt-1 in spleen and thymus cells from mouse and rat and characterizes molecular properties of the gene, our work mainly focused on analyzing function of rpt-1 in human skin cells. Expression of rpt-1 in human cells were analyzed by western and northern blot RT-PCR analysis. Expression of rpt-1 as well as Staf-50 in human cells with or without exposure to environmental pollutants were also analyzed by northern blot analysis, since Staf-50 is homologous with rpt-1 and found in human cells. To help study roles of rpt-1 in human cell system, retroviral vector system carrying rpt-1 gene under the CMV promoter were constructed and transfected. Cells overexpressing the gene after the transfection showed an increase of cell density and soft agar colony formations, as compared to the control cells, suggesting that rpt-1 may play a certain role in the transformation processes of human cells. While the expression of rpt-1 in spleen and thymus is known to be strong in the laboratory animals, both the basal and TCDD-induced expression of rpt-1 in the current cellular system remained insignificant. It is speculated that the expression pattern of rpt-1 may be tissue- and species-specific. The present study demonstrated a strong expression of rpt-1 protein in the brain of SD rat model. Since there is no previous report on the expression of rpt-1 in the brain tissue, the result may play a significant role in understanding dioxin-induced neurotoxicities in the future. The present study provides an opportunity to understand a role of rpt-1 in human cell system and suggest a possible lead and basis for the future study of dioxin-induced neurotoxicities.

  • PDF

Siderophore를 생성하는 Fluorescent Pseudomonads의 분리, 동정 및 돌연번이 유기 (Identification of Fluorescent Pseudomonads Producing Siderophore and Construction of Siderophore Biosynthesis Defective Mutant)

  • Park, Yeal;Kim, Hyun Hee;Myeong-gu Yeo;Young-woo Seo;Han-cheol Koh;Young-gi Yang;Hyeon-Sook Cheong;Sung-jun Kim
    • 미생물학회지
    • /
    • 제30권4호
    • /
    • pp.286-290
    • /
    • 1992
  • 광주근교 지역의 근권 토양으로부터 cetrimide agar medium을 이용하여 형광성 pseudomonads를 분리하였고, CAS medium에서 siderophore의 생성능력이 우수한 pseudomonads만을 분리하여 생리화학적인 실험을 수행하였다. Kanamycin-sensitive pseudomonads를 Tn5를 이용한 mutagenesis를 실시하여 Kanamycin에 내성을 갖는 transconjugants를 선별하였고, siderophore 생합성을 하지 못하는 돌연변이주를 선별하기 위하여 CAS medium에서 yellow hallow를 형성하지 못하거나 King's B medium에서 형광성을 나타내지 못하는 colony를 선별하였다. 선별된 mutants들의 genomic DNA에 Tn5가 삽입되었는지를 확인하기 위하여 Southern blot hybridization을 실시한 결과 intact Tn5에 homology를 나타내는 하나의 single band를 확인하였다.

  • PDF

두경부편평세포암종에서 Gleevec의 효과 (Effect of Gleevec on Head and Neck Squamous Cell Carcinoma)

  • 주형로
    • 대한두경부종양학회지
    • /
    • 제21권2호
    • /
    • pp.158-164
    • /
    • 2005
  • Purpose: The serine/threonine kinase Akt was described to inhibit apoptosis in cancer. This study was to examine the effect of Gleevec on head and neck squamous cell carcinoma(HNSCC) through the mechanism of Akt. Experimental Design: Gleevec was introduced into the HNSCC cell lines UMSCC10B, HN12 and HN30 in a range of concentrations. Cell viability was assessed by clonogenic survival analysis. Targets of Gleevec(PDGFR, c-Kit, and c-Abl) were evaluated by Western blot. HNSCC tissue samples were stained for PDGFR, c-Kit and phosphorylated Akt. Akt phosphorylation following Gleevec treatment was assessed using Western blot. Akt siRNA was used to as the positive control. Results: Colony forming efficiency decreased with an increase in concentration of Gleevec. Expressions of PDGFR, c-Kit, and c-Abl were observed in HNSCC cells. Immunohistochemistry confirmed high expression of PDGFR, c-Kit, and p-Akt in human HNSCC tissues. Akt kinase activity was significantly inhibited with increasing concentration of Gleevec in HNSCC cells, and near complete dephosphorylation of Akt was observed at $6{\mu}M$ of Gleevec in the UMSCC10B and HN30 cell lines. Conclusions: Gleevec at clinically comparable concentrations caused a dose dependant decrease in HNSCC survival. The decreased cell survival was related to the inhibition of Akt kinase activity and dephosphorylation of Akt. Akt signaling pathway may be a relevant target for Gleevec in treating HNSCC.

Cloning and Expression of a Yeast Cell Wall Hydrolase Gene (ycl) from Alkalophilic Bacillus alcalophilus subsp. YB380

  • Ohk, Seung-Ho;Yeo, Ik-Hyun;Yu, Yun-Jung;Kim, Byong-Ki;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권3호
    • /
    • pp.508-514
    • /
    • 2001
  • A stuructural gene (ycl) encoding novel yeast cell wall hydrolase, YCL, was cloned from alkalophilic Bacillus alcalophilus subsp. YB380 by PCR, and transformed into E. coli JM83. Based on the N-terminal and internal amino acid sequences of the enzyme, primers were designed for PCr. The positive clone that harbors 1.8 kb of the yeast cell wall hydrolase gene was selected by the colony hybridization method with a PCR fragment as a probe. According to the computer analysis, this gene contained a 400-base-paired N-terminal domain of the enzyme. Based on nucletide homology of the cloned gene, a 850 bp fragment was amplified and the C-terminal domain of the enzyme was sequenced. With a combination of the two sequences, a full nucleotide sequence for YCL was obtained. This gene, ycl, consisted of 1,297 nucleotides with 27 nucleotides with 27 amino acids of signal sequence, 83 redundant amino acids of prosequence, and 265 amino acids of the mature protein. This gene was then cloned into the pJH27 shuttle vector and transformed into the Bacillus subtilis DB104 to express the enzyme. It was confirmed that the expressed cell wall hydrolase that was produced by Bacillus subtilis DB104 was the same as that of the donor strain, by Western blot using polyclonal antibody (IgY) prepared from White Leghorn hen. Purified yeast cell wall hydrolase and expressed recombinant protein showed a single band at the same position in the Western blot analysis.

  • PDF

Strain Improvement and Genetic Characterization of Tautomycetin Biosynthesis in Streptomyces spp.

  • Choi, Si-Sun;Kim, Myung-Gun;Kim, Eung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.420-422
    • /
    • 2005
  • TMC (Tautomycetin) is a liner polyketide immunosuppressive antifungal compound produced by Streptomyces spp. Inhibition of T cell proliferation with TMC was observed highly efficient at 100-fold lower than those needed to achieve maximal inhibition with cyclosporin A. To elucidate the biosynthetic pathway of TMC, a genomic DNA library was constructed using a E. coil-Streptomyces shuttle cosmid vector, pOJ446. The DNA libraries were screened by colony blot hybridization using several polyketide ${\beta}-ketosynthase$ (KS) probes amplified from TMC-producing Streptomyces genomic DNA using polymerase chain reaction (PCR), of which the degenerate primers were designed based on the highly conserved sequences present in KS domains of various type I polyketide synthase genes in Streptomyces species. This library construction and screening approach led to the isolation of several positive cosmid clones representing type I polyketide biosynthetic gene clusters. In addition, a Streptomyces regulatory gene called afsR2 (a global regulatory gene stimulating antibiotic production in both S. coelicolor and S. lividans) was successfully integrated into the TMC-producing Streptomyces chromosome via E. coil-Streptomyces heterologous conjugation mehtod. The more detailed results of production improvement and genetic characterization of TMC-producing Streptomyces spp. will be discussed.

  • PDF

Serratia marcescens Metalloprotease 유전자의 대장균에로의 클로닝 (Molecular Cloning of Serratia rnarcescens Metalloprotease Gene into Escherichia coli)

  • 김기석;이창원;이상열;이병룡;신용철
    • 한국미생물·생명공학회지
    • /
    • 제20권3호
    • /
    • pp.280-288
    • /
    • 1992
  • Serratia marcescens ATCC 21074 균주가 세포밖으로 분비하는 metalloprotease 유전자를 대장균으로 클로닝하고 그 발현을 살펴보았다 Serratia marcescens ATCC 21074 균주의 염색체 DNA를 제한효소 HindIII로 절단하고 아가로스 전기영동 후 32P로 표지된 합성 oligonucleotide를 사용하여 southern hybridization한 결과 4.0Kb의 DNA 절편에 metalloprotease가 존재함을 알 수 있었다. 4.0Kb 염색체 DNA 절ㅊ편을 분리하여 pUC19에 연결한 후 대장균으로 transformation하였다.

  • PDF

Cloning and Characterization of the $_L$-Lactate Dehydrogenase Gene (IdhL) from Lactobacillus reuteri ATCC 55739

  • Park, Jar-Yong;Park, Sun-Jung;Nam, Su-Jin;Ha, Yeong-Lae;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권5호
    • /
    • pp.716-721
    • /
    • 2002
  • The ldhL gene encoding the $_L$-(+) lactate dehydrogenase was cloned from Lactobacillus reuteri ATCC 55739 chromosomal DNA and characterized. An internal 750-bp fiagment of ldhL gene was amplified by PCR using primers based on the conserved region of lactobacilli ldhL genes. A genomic library off. reuteri ATCC 55739 was constructed using pBR322, and colony hybridization experiments were performed using the 750-bp fragment as aprobe. One clone harboring a 4.0-kb PstI fragment was identified, and nucleotide sequencing confirmed it as an open reading frame of 972 bp in size in the middle. In addition to IdhL gene, an ORF homologous to Streptococcus pneumoniae TIGR4 hydrolase gene and 3' part of phosphomevalonate kinase gene (mvaK2) were also found on the 4 kb fragment. $_L$-LDH of L. reuteri ATCC 55739 showed the highest degree of homology with the $_L$-LDH of Pediococcus acidilactici (62.4%), fullowed by the $_L$-LDH of Lactobacillus pentosus (58.7%). The size of IdhL transcript determined by Northern blot was 1 kb, indicating the monocistronic nature of IdhL.

대장균에서 무작위 샤인-달가노 서열이 소성장호르몬 유전자 발현에 미치는 영향 (Effect of random Shine-Dalarno sequence on the expression of Bovine Growth Hormone Gene in Escherichia coli)

  • 나경수;나경수;백형석;이용세
    • 생명과학회지
    • /
    • 제10권4호
    • /
    • pp.422-430
    • /
    • 2000
  • In order to search for the effects of Shine-Dalgarno (SD) sequence and nucleotide sequence of spacer region (SD-ATG) on bGH expression, oligonucleotides containing random SD sequences and a spacer region were chemically synthesized. The distance between SD region and initiation codon (ATG) was fixed to 9 nucleotides in length. The expression vectors have been constructed using pT7-1 vector containing a T7 promoter. Positive clones were screened with colony hybridization and named pT7A or pT7B plasmid series. The selected clones were confirmed by DNA sequencing and finally, 19 clones having various SD combinations were obtained. When bovine growth hormone was induced by IPTG in E. coli BL21(DE3), all cells harboring these plasmids produced a detectable level of bGH in western blot analysis. However, various SD sequences did not affect on bGH expression, indicating that the sequences of SD and the spacer region did not sufficiently destabilize mRNA secondary structure of bGH gene. Therefore, these results indicate that the disruption of mRNA secondary structure might be a major factor for regulating bGH expression in the translational initiation process.

  • PDF

Genomic Organization of Penicillium chrysogenum chs4, a Class III Chitin Synthase Gene

  • Park, Yoon-Dong;Lee, Myung-Sook;Kim, Ji-Hoon;Jun Namgung;Park, Bum-Chan;Bae, Kyung-Sook;Park, Hee-Moon
    • Journal of Microbiology
    • /
    • 제38권4호
    • /
    • pp.230-238
    • /
    • 2000
  • Class III chitin synthases in filamentous fungi are important for hyphal growth and differentiation of several filamentous fungi. A genomic clone containing the full gene encoding Chs4, a class III chitin synthase in Penicillium chrysogenum, was cloned by PCR screening and colony hybridization from the genomic library. Nucleotide sequence analysis and transcript mapping of chs4 revealed an open reading frame (ORF) that consisted of 5 exons and 4 introns and encoded a putative protein of 915 amino acids. Nucleotide sequence analysis of the 5'flanking region of the ORF revealed a potential TATA box and several binding sites for transcription activators. The putative transcription initiation site at -716 position was identified by primer extension and the expression of the chs4 during the vegetative growth was confirmed by Northern blot analysis. Amino acid sequence analysis of the Chs4 revealed at least 5 transmembrane helices and several sites for past-transnational modifications. Comparison of the amino acid sequence of Chs4 with those of other fungi showed a close relationship between P chrysogenum and genus Aspergillus.

  • PDF