• Title/Summary/Keyword: colon-target

Search Result 69, Processing Time 0.026 seconds

Anti-Proliferative Activity of Nodosin, a Diterpenoid from Isodon serra, via Regulation of Wnt/β-Catenin Signaling Pathways in Human Colon Cancer Cells

  • Bae, Eun Seo;Kim, Young-Mi;Kim, Dong-Hwa;Byun, Woong Sub;Park, Hyen Joo;Chin, Young-Won;Lee, Sang Kook
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.465-472
    • /
    • 2020
  • Colorectal cancer (CRC) is one of the most malignant type of cancers and its incidence is steadily increasing, due to life style factors that include western diet. Abnormal activation of canonical Wnt/β-catenin signaling pathway plays an important role in colorectal carcinogenesis. Therefore, targeting Wnt/β-catenin signaling has been considered a crucial strategy in the discovery of small molecules for CRC. In the present study, we found that Nodosin, an ent-kaurene diterpenoid isolated from Isodon serra, effectively inhibits the proliferation of human colon cancer HCT116 cells. Mechanistically, Nodosin effectively inhibited the overactivated transcriptional activity of β-catenin/T-cell factor (TCF) determined by Wnt/β-catenin reporter gene assay in HEK293 and HCT116 cells. The expression of Wnt/β-catenin target genes such as Axin2, cyclin D1, and survivin were also suppressed by Nodosin in HCT116 cells. Further study revealed that a longer exposure of Nodosin induced the G2/M phase cell cycle arrest and subsequently apoptosis in HCT116 cells. These findings suggest that the anti-proliferative activity of Nodosin in colorectal cancer cells might in part be associated with the regulation of Wnt/β-catenin signaling pathway.

Enhancement of Phase II and Antioxidant Enzymes in Mice by Soybeans Fermentation with Basidiomycetes

  • Shon, Yun-Hee;Kim, So-Yeun;Lee, Jae-Sung;Nam, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.851-857
    • /
    • 2000
  • The activities of phase II and antioxidant enzymes in the liver, lung, kidney, stomach, and colon of mice were examined following intragastric application of polysaccharides extracted from soybeans fermented with either Agrocybe Cylindracea (AC) or Phellinus ignarius (PI). The intragastric application of the extracts to mice for 14 days significantly increased the activities of quinone reductase (QP) and glutathione S-transferase (GST) in the liver and kidney, glutathione (GSH) and superoxide dismutase (SOD) in the liver, kidney, lung, and stomach, and glutathione peroxidase (GSH-Px) in the liver, lung, and kidney. In general, the elevation of the phase II and antioxidant enzymes activities was more pronounced in the liver and kidney as compared to the lung, stomach, and colon. Accordingly, these finding suggest that polysaccharides extracted from soybeans fermented with A. cylindracea or P. igniarius have a cancer chemopreventive potential in various target organs.

  • PDF

Mithramycin Inhibits Etoposide Resistance in Glucose-deprived HT-29 Human Colon Carcinoma Cells

  • Lee, Eun-Mi;Park, Hae-Ryong;Hwang, Ji-Hwan;Park, Dong-Jin;Chang, Kyu-Seob;Kim, Chang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1856-1861
    • /
    • 2007
  • Physiological cell conditions such as glucose deprivation and hypoxia play roles in the development of drug resistance in solid tumors. These tumor-specific conditions cause decreased expression of DNA topoisomerase $II{\alpha}$, rendering cells resistant to topo II target drugs such as etoposide. Thus, targeting tumor-specific conditions such as a low glucose environment may be a novel strategy in the development of anticancer drugs. On this basis, we established a novel screening program for anticancer agents with preferential cytotoxic activity in cancer cells under glucose-deprived conditions. We recently isolated an active compound, AA-98, from Streptomyces sp. AA030098 that can prevent stress-induced etoposide resistance in vitro. Furthermore, LC-MS and various NMR spectroscopic methods identified AA-98 as mithramycin, which belongs to the aureolic acid group of antitumor compounds. We found that mithramycin prevents the etoposide resistance that is induced by glucose deprivation. The etoposide-chemosensitive action of mithramycin was just dependent on strict low glucose conditions, and resulted in the selective cell death of etoposide-resistant HT-29 human colon cancer cells.

Implications of NQO1 in cancer therapy

  • Oh, Eun-Taex;Park, Heon Joo
    • BMB Reports
    • /
    • v.48 no.11
    • /
    • pp.609-617
    • /
    • 2015
  • NAD(P)H:quinone oxidoreductase (NQO1), an obligatory two-electron reductase, is a ubiquitous cytosolic enzyme that catalyzes the reduction of quinone substrates. The NQO1- mediated two-electron reduction of quinones can be either chemoprotection/detoxification or a chemotherapeutic response, depending on the target quinones. When toxic quinones are reduced by NQO1, they are conjugated with glutathione or glucuronic acid and excreted from the cells. Based on this protective effect of NQO1, the use of dietary compounds to induce the expression of NQO1 has emerged as a promising strategy for cancer prevention. On the other hand, NQO1-mediated two-electron reduction converts certain quinone compounds (such as mitomycin C, E09, RH1 and β-lapachone) to cytotoxic agents, leading to cell death. It has been known that NQO1 is expressed at high levels in numerous human cancers, including breast, colon, cervix, lung, and pancreas, as compared with normal tissues. This implies that tumors can be preferentially damaged relative to normal tissue by cytotoxic quinone drugs. Importantly, NQO1 has been shown to stabilize many proteins, including p53 and p33ING1b, by inhibiting their proteasomal degradation. This review will summarize the biological roles of NQO1 in cancer, with emphasis on recent findings and the potential of NQO1 as a therapeutic target for the cancer therapy.

Dynamic MRM Measurements of Multi-Biomarker Proteins by Triple-Quadrupole Mass Spectrometry with Nanoflow HPLC-Microfluidics Chip

  • Ji, Eun-Sun;Cheon, Mi-Hee;Lee, Ju-Yeon;Yoo, Jong-Shin;Jung, Hyun-Jin;Kim, Jin-Young
    • Mass Spectrometry Letters
    • /
    • v.1 no.1
    • /
    • pp.21-24
    • /
    • 2010
  • The development of clinical biomarkers involves discovery, verification, and validation. Recently, multiple reaction monitoring (MRM) coupled with stable isotope dilution mass spectrometry (IDMS) has shown considerable promise for the direct quantification of proteins in clinical samples. In particular, multiple biomarkers have been tracked in a single experiment using MRM-based MS approaches combined with liquid chromatography. We report here a highly reproducible, quantitative, and dynamic MRM system for validating multi-biomarker proteins using Nanoflow HPLC-Microfluidics Chip/Triple-Quadrupole MS. In this system, transitions were acquired only during the retention window of each eluting peptide. Transitions with the highest MRM-MS intensities for the five target peptides from colon cancer biomarker candidates were automatically selected using Optimizer software. Relative to the corresponding non-dynamic system, the dynamic MRM provided significantly improved coefficients of variation in experiments with large numbers of transitions. Linear responses were obtained with concentrations ranging from fmol to pmol for five target peptides.

Chemistry and Biology of Ras Farnesyltransferase

  • Cho, Kwang-Nym;Lee, Kee-In
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.759-769
    • /
    • 2002
  • Mutated forms of ras are found in many human tumors and the rate of incidence is significantly higher in colon and pancreatic cancers. The protein product from the ras oncogene is a small G-protein, $p21^{ras}{\;}(Ras)$ that is known to playa key role in the signal transduction cascade and cell differentiation and proliferation. Mutated Ras is unable to regulate itself and remains constantly activated, leading to uncontrolled cell growth. The function of Ras in signal transduction requires its location near the growth factor receptor at the cell membrane. However, Ras does not have a transmembrane domain. Ras requires farnesylation to increase its hydrophobicity and subsequent plasma membrane association for its transforming activity. This key post-translational modification is catalyzed by the enzyme Ras farnesyltransferase (FTase), which transfers a farnesyl group from farnesylpyrophosphate to the C-terminal cysteine of the Ras protein. The requirement has focused attention on FTase as a target for therapeutic intervention. Selective inhibition of FTase will prevent Ras protein from association with the plasma membrane, leading to a disruption of oncogenic Ras function.

Exercise and Health in Women (여성의 건강과 운동)

  • Yu, Seon-Mi
    • Journal of Korea Association of Health Promotion
    • /
    • v.3 no.2
    • /
    • pp.147-164
    • /
    • 2005
  • The purpose of this study was to examine the effects of physical activity on women's health. I conducted literature reviews for meta-analyses and randomized controlled trials with the target diseases including cardiovascular diseases, diabetes, cancers osteoporosis, and pregnancy outcomes. Women who were active had less total mortality and smaller incidence of hypertension, coronary heart diseases, and stroke. Exercise was better than drug therapies in preventing diabetes and effective in preventing colon and breast cancers. Exercise can reduce the risks of falling injury in elderly women. Walking during pregnancy was not harmful to the mothers and their infants, and desirable to prevent the complications of pregnancy or weight gain after pregnancy. Physical activity at work and leisure-time showed similar effects on women's health. Based on these results, moderate-intensity physical activity should be recommended to all women, Resistive, muscle strength, and balance-training exercise also can be recommended. Doctors' advices are effective to make women exercise, especially using handouts or motivational interviewing techniques. It is desirable to recommend to peform other health promotion measures together such as smoking cessation, weight control and diet control.

  • PDF

Chalcones-Sulphonamide Hybrids: Synthesis, Characterization and Anticancer Evaluation

  • Khanusiya, Mahammadali;Gadhawala, Zakirhusen
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.2
    • /
    • pp.85-93
    • /
    • 2019
  • A panel of chalcone-sulphonamide hybrids has been designed by tethering appropriate sulphonamide scaffold with substituted chalcones as a multi-target drug for anticancer screening. Chalcones were prepared by Claisen-Schmidt condensation reaction of a substituted aldehyde with para aminoacetophenone. All the synthesized compounds were evaluated against selected five cancer cell lines, MCF-7 (Breast cancer), DU-145 (Human prostate Carcinoma), HCT-15 (Colon cancer), NCIH-522 (stage 2, adenocarcinoma; non-small cell lung cancer) and HT-3 (Human cervical cancer). Most of the synthesized chalcone-sulphonamide hybrids showed amended cytotoxic activity against various cancer cell lines which may be attributed to the linkage of sulphonamide with chalcone skeleton. The synthesized compounds were characterized by FT-IR, $^1H$ NMR, $^{13}C$ NMR and HR-LCMS and spectral study assert the structures of synthesized sulphonamide-chalcone hybrids.

Induction of cell cycle arrest and apoptosis by an indirubin analog, a CDK inhibitor, in human lung cancer cells

  • Lee, Jong-Won;Moon, Myung-Ju;Kim, Yong-Chul;Lee, Sang-Kook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.91.2-91.2
    • /
    • 2003
  • Cyclin-dependent kinases (CDKs) regulate the cell division cycle, apoptosis, transcription and differentiation. Inhibition of CDK is a promising target in development of anti-cancer agents. An indirubin analog (AGM01l), a CDK inhibitor, is a synthetic compound that inhibits human cancer cell growth in vitro. AGM01l showed a potent cytotoxicity in cultured human cancer cell lines (IC$\sub$50/ = 5.43 ${\mu}$M for A549, human colon cancer cell; IC$\sub$50/ = 1.21 ${\mu}$M for SNU-638, human stomach cancer cell; IC$\sub$50/ 9.23 ${\mu}$M for HL-60, human leukemia cell). (omitted)

  • PDF

Validation of Neurotensin Receptor 1 as a Therapeutic Target for Gastric Cancer

  • Akter, Hafeza;Yoon, Jung Hwan;Yoo, Young Sook;Kang, Min-Jung
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.591-602
    • /
    • 2018
  • Gastric cancer is the fifth most common type of malignancy worldwide, and the survival rate of patients with advanced-stage gastric cancer is low, even after receiving chemotherapy. Here, we validated neurotensin receptor 1 (NTSR1) as a potential therapeutic target in gastric cancer. We compared NTSR1 expression levels in sixty different gastric cancer-tissue samples and cells, as well as in other cancer cells (lung, breast, pancreatic, and colon), by assessing NTSR1 expression via semi-quantitative real-time reverse transcription polymerase chain reaction, immunocytochemistry and western blot. Following neurotensin (NT) treatment, we analyzed the expression and activity of matrix metalloproteinase-9 (MMP-9) and further determined the effects on cell migration and invasion via wound-healing and transwell assays. Our results revealed that NTSR1 mRNA levels were higher in gastric cancer tissues than non-cancerous tissues. Both of NTSR1 mRNA levels and expression were higher in gastric cancer cell lines relative to levels observed in other cancer-cell lines. Moreover, NT treatment induced MMP-9 expression and activity in all cancer cell lines, which was significantly decreased following treatment with the NTSR1 antagonist SR48692 or small-interfering RNA targeting NTSR1. Furthermore, NT-mediated metastases was confirmed by observing epithelial-mesenchymal transition markers SNAIL and E-cadherin in gastric cancer cells. NT-mediated invasion and migration of gastric cancer cells were reduced by NTSR1 depletion through the Erk signaling. These findings strongly suggested that NTR1 constitutes a potential therapeutic target for the inhibition of gastric cancer invasion and metastasis.