• 제목/요약/키워드: collocated control

검색결과 54건 처리시간 0.024초

보의 진동억제를 위한 중앙화 및 비중앙화 제어의 비교 연구 (Comparison of Centralized and Decentralized Control for Vibration Suppression of a Beam)

  • 이영섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.494-497
    • /
    • 2005
  • Direct velocity feedback (DVFB) control with a collocated distributed actuator and point sensor pair is known that it offers a good stability with high performance when the control strategy is applied at the suppression of structural vibration. Also decentralized control method introduced to offer to reduce implementaion effort and malfunction due to failure in sensors and actuators of control system has become an important position in DVFB. In this paper, the decentralized control is compared with centralized control in terms of vibrational velocity reduction in a clamped-clamped beam.

  • PDF

Seismic response control of buildings with force saturation constraints

  • Ubertini, Filippo;Materazzi, A. Luigi
    • Smart Structures and Systems
    • /
    • 제12권2호
    • /
    • pp.157-179
    • /
    • 2013
  • We present an approach, based on the state dependent Riccati equation, for designing non-collocated seismic response control strategies for buildings accounting for physical constraints, with particular attention to force saturation. We consider both cases of active control using general actuators and semi-active control using magnetorheological dampers. The formulation includes multi control devices, acceleration feedback and time delay compensation. In the active case, the proposed approach is a generalization of the classic linear quadratic regulator, while, in the semi-active case, it represents a novel generalization of the well-established modified clipped optimal approach. As discussed in the paper, the main advantage of the proposed approach with respect to existing strategies is that it allows to naturally handle a broad class of non-linearities as well as different types of control constraints, not limited to force saturation but also including, for instance, displacement limitations. Numerical results on a typical building benchmark problem demonstrate that these additional features are achieved with essentially the same control effectiveness of existing saturation control strategies.

Combined Optimal Design of Robust Control System and Structure System for Truss Structure with Collocated Sensors and Actuators

  • Park, Jung-Hyen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권2호
    • /
    • pp.15-21
    • /
    • 2002
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these farms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.

능동음향진동제어를 위한 센서와 액추에이터의 동위치화 연구 (Collocation of Sensor and Actuator for Active Control of Sound and Vibration)

  • 이영섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.778-783
    • /
    • 2003
  • The problem considered in this paper is about the collocation of sensor and actuator for the active control of sound and vibration. It is well-known that a point collocated sensor-actuator pair offers an unconditional stability with very high performance when it is used with a direct velocity feedback (DVFB) control, because the pair has strictly positive real (SPR) property. In order to utilize this SPR characteristics, a matched piezoelectric sensor and actuator pair is considered, but this pair suffers from the in-plane motion coupling problem with the out-of$.$plane motion due to the piezo sensor and actuator interaction. This coupling phnomenon limits the stability and performance of the matched pair with DVFB control. As a new alternative, a point sensor and piezoelectric actuator pair is also considered, which provides SPR property in all frequency range except at the first resonance in very low frequency. This non-SPR resonance could be minimized by applying a phase lag compensator.

  • PDF

Modeling and fast output sampling feedback control of a smart Timoshenko cantilever beam

  • Manjunath, T. C.;Bandyopadhyay, B.
    • Smart Structures and Systems
    • /
    • 제1권3호
    • /
    • pp.283-308
    • /
    • 2005
  • This paper features about the modeling and design of a fast output sampling feedback controller for a smart Timoshenko beam system for a SISO case by considering the first 3 vibratory modes. The beam structure is modeled in state space form using FEM technique and the Timoshenko beam theory by dividing the beam into 4 finite elements and placing the piezoelectric sensor/actuator at one location as a collocated pair, i.e., as surface mounted sensor/actuator, say, at FE position 2. State space models are developed for various aspect ratios by considering the shear effects and the axial displacements. The effects of changing the aspect ratio on the master structure is observed and the performance of the designed FOS controller on the beam system is evaluated for vibration control.

Filtered Velocity Feedback 제어기를 이용한 양단지지보의 음향파워 저감 (Reduction of Sound Radiated Power of Clamped Beams using Filtered Velocity Feedback Controllers)

  • 신창주;홍진숙;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1104-1111
    • /
    • 2011
  • This paper investigates the filtered velocity feedback(FVF) controller for the reduction of the acoustic power radiated from a clamped beam. The instability problem due to the non-collocated sensor/actuator configuration when using PZT actuator should be sorted out. The roll-off property of the FVF controller at high frequency helps to alleviate the instability. The dynamics of clamped beams under forces and moments pair and the FVF controller are first formulated. The formulation of the sound radiated power is followed. The open loop transfer function(OLTF) synthesized with 100 modes is used to determine the stability of the control system. The control performance is finally estimated. The levels of the vibration and the sound radiated power are reduced in the wide bandbelow the tuning mode of the FVF controller.

Active tendon control of suspension bridges: Study on the active cables configuration

  • Tian, Zhui;Mokrani, Bilal;Alaluf, David;Jiang, Jun;Preumont, Andre
    • Smart Structures and Systems
    • /
    • 제19권5호
    • /
    • pp.463-472
    • /
    • 2017
  • In a previous study, the potential of damping suspension bridges with active stay cables has been evaluated on a numerical model of a suspension bridge, and demonstrated experimentally on a laboratory mockup. In this paper, we extend our study to explore two different configurations of the active stay-cables: one classical configuration, corresponding to attaching the active stay-cables between the top of the pylons and the deck (configuration I) and, another configuration, consisting of attaching the stay-cables between the base of the pylons and the catenary (configuration II). The analysis confirmed that both configurations are effective with a slight superiority of the second configuration. The study is conducted numerically and experimentally on a suspension bridge mock-up, by considering two types of active stay-cables. The experimental results confirmed the numerical predictions, and demonstrated the effectiveness of the second configuration.

Filtered Velocity Feedback 제어기를 이용한 양단지지보의 음향파워 저감 (Reduction of Sound Radiated Power of Clamped Beams using Filtered Velocity Feedback Controllers)

  • 신창주;홍진숙;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.377-383
    • /
    • 2011
  • This paper reports the filtered velocity feedback (FVF) controller to reduce the acoustic power from clamped beams. The instability problem due to the non-collocated sensor/actuator configuration when using PZT actuator should be resolved. The roll-off property of the FVF controller at high frequency helps to alleviate the instability. The dynamics of clamped beams under forces and moments pair and the FVF controller are first formulated. The formulation of the sound radiated power is followed. The open loop transfer function (OLTF) synthesized with 100 modes is used to determine the stability of the control system. The control performance is finally estimated. The levels of the vibration and the sound radiated power are reduced in the wide band below the tuning mode of the FVF controller.

  • PDF

구배법을 이용한 진동제어용 압전 감지기/작동기의 위치 최적화 (Optimization of Piezoceramic Sensor/Actuator Placement for Vibration Control Using Gradient Method)

  • 강영규
    • 한국소음진동공학회논문집
    • /
    • 제11권6호
    • /
    • pp.169-174
    • /
    • 2001
  • Optimization of the collocated piezoceramic sensor/actuator placement is investigated numerically and verified experimentally for vibration control of laminated composite plates. The finite element method is used for the analysis of dynamic characteristics of the laminated composite plates with the piezoceramic sensor/actuator. The structural damping index(SDI) is defined from the modal damping(2$\omega$ζ) . It is chosen as the objective function for optimization. Weights for each vibrational mode are taken into account in the SDI calculation. The gradient method is used for the optimization. Optimum location of the piezoceramic sensor/actuator is determined by maximizing the SDI. Numerical simulation and experimental results show that the optimum location of the piezoceramic sensor/actuator is dependent upon the outer layer fiber orientations of the plate, and location and size of the piezoceramic sensor/actuator.

  • PDF

내부 불평형 기진력을 갖는 원통형 구조물의 능동진동제어 (Active Vibration Control of Shell Structure Subjected to Internal Unbalanced Excitation)

  • 김승기;정우진;배수룡;이상규;곽문규
    • 한국소음진동공학회논문집
    • /
    • 제27권2호
    • /
    • pp.195-203
    • /
    • 2017
  • This paper is concerned with the active vibration control of shell structure that is subjected to internal unbalanced excitation by using active mounts and accelerometers. The unbalanced excitation is caused by a rotating unbalanced mass. The control algorithm considered in this study is the negative acceleration feedback (NAF) control. A simplified dynamic model was derived to verify the effectiveness of the NAF control. Four actuators and four accelerometers were mounted on the shell structure, so that the multiple-input and multiple-output (MIMO) NAF controller was designed by both centralized and decentralized ways. Numerical results show that both the decentralized and centralized NAF controllers are effective. Based on the numerical simulation, the proposed decentralized NAF controller was applied to the real shell structure. Experimental results show that the proposed decentralized NAF controller can effectively suppress vibrations of the shell structure.