• 제목/요약/키워드: collision velocity

검색결과 380건 처리시간 0.025초

속도 변형을 이용한 두 매니퓨레이터의 충돌회피에 대한 연구 (A Study on the Collision Avoidance of Two Manipulators using Velocity Modifications)

  • Bum-Hee Lee
    • 대한전기학회논문지
    • /
    • 제37권8호
    • /
    • pp.563-569
    • /
    • 1988
  • 본 논문에서는 공통의 작업장에서 운용되는 두 개의 매니퓰레이터의 충돌회피를 위한 속도변형 방법들이 연구된다. 두 매니퓰레이터의 상호충돌시 현저한 특성으로 인한 여러 종류의 새로운 충돌양상이 연구되며 무충돌 운용을 계획하는데 사용된다. 충돌지도와 속도변형의 개념들이 무충돌 운용을 계{획하기 위해 개발 적용된다. 한가지 예가 궤적의 속도 가감을 보이기 위해 예시도었으며, 이 예는 움직이는 두 로보트 매니퓰레이터의 무충돌 궤도 계획을 위한 제안된 방법들의 유용성을 보여준다.

국제해상충돌예방규칙을 고려한 확률적 속도 장애물 기반의 선박 충돌회피 알고리즘 (Automatic Ship Collision Avoidance Algorithm based on Probabilistic Velocity Obstacle with Consideration of COLREGs)

  • 조용훈;한정욱;김진환;이필엽
    • 대한조선학회논문집
    • /
    • 제56권1호
    • /
    • pp.75-81
    • /
    • 2019
  • This study presents an automatic collision avoidance algorithm for autonomous navigation of unmanned surface vessels. The performance of the collision avoidance algorithm is heavily dependent on the estimation quality of the course and speed of traffic ships because collision avoidance maneuvers should be determined based on the predicted motions of the traffic ships and their trajectory uncertainties. In this study, the collision avoidance algorithm is implemented based on the Probabilistic Velocity Obstacle (PVO) approach considering the maritime collision regulations (COLREGs). In order to demonstrate the performance of the proposed algorithm, an extensive set of simulations was conducted and the results are discussed.

A method of minimum-time trajectory planning ensuring collision-free motion for two robot arms

  • Lee, Jihong;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.990-995
    • /
    • 1990
  • A minimum-time trajectory planning for two robot arms with designated paths and coordination is proposed. The problem considered in this paper is a subproblem of hierarchically decomposed trajectory planning approach for multiple robots : i) path planning, ii) coordination planning, iii) velocity planning. In coordination planning stage, coordination space, a specific form of configuration space, is constructed to determine collision region and collision-free region, and a collision-free coordination curve (CFCC) passing collision-free region is selected. In velocity planning stage, normal dynamic equations of the robots, described by joint angles, velocities and accelerations, are converted into simpler forms which are described by traveling distance along collision-free coordination curve. By utilizing maximum allowable torques and joint velocity limits, admissible range of velocity and acceleration along CFCC is derived, and a minimum-time velocity planning is calculated in phase plane. Also the planning algorithm itself is converted to simple numerical iterative calculation form based on the concept of neural optimization network, which gives a feasible approximate solution to this planning problem. To show the usefulness of proposed method, an example of trajectory planning for 2 SCARA type robots in common workspace is illustrated.

  • PDF

비례항법을 이용한 무인 항공기의 최적 충돌 회피 기동 (Proportional Navigation-Based Optimal Collision Avoidance for UAVs)

  • 한수철;방효충
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1065-1070
    • /
    • 2004
  • Optimal collision avoidance algorithm for unmanned aerial vehicles based on proportional navigation guidance law is investigated this paper. Although proportional navigation guidance law is widely used in missile guidance problems, it can be used in collision avoidance problem by guiding the relative velocity vector to collision avoidance vector. The optimal navigation coefficient can be obtained if an obstacle if an obstacle moves at constant velocity vector. The stability of the proposed algorithm is also investigated. The stability can be obtained by choosing a proper navigation coefficient.

막비등 영역에서 액적-벽면 충돌 시 충돌각도가 열전달에 미치는 영향에 관한 실험적 연구 (Experimental Study of Collision Angle Effects on Heat Transfer During Droplet-wall Collision in Film Boiling Regime)

  • 박준석;김형대
    • 한국분무공학회지
    • /
    • 제22권3호
    • /
    • pp.129-136
    • /
    • 2017
  • Effects of collision angle on heat transfer characteristics of a liquid droplet impinging on a heated wall above the Leidenfrost point temperature were experimentally investigated. The heated wall and droplet temperatures were $506^{\circ}C$ and $100^{\circ}C$, respectively, and the impact angle varied from $20^{\circ}$ to $90^{\circ}$ while the normal collision velocity was constant at 0.27 m/s. The droplet collision behaviors and the surface temperature distribution were measured using synchronized high-speed video and infrared cameras. The major physical parameters influencing upon droplet-wall collision heat transfer, such as residence time, wall heat flux, effective heat transfer area, heat transfer amount, were analyzed. It was found at the constant normal collision velocity that the residence time, wall heat flux and effective heat transfer area were hardly not changed, resulting in the almost constant heat transfer amount.

선박에 의한 해상교량의 충돌취약도 해석 (Collision Fragility Analysis of Offshore Bridge by Ship)

  • 조병일;김동현;오영민
    • 한국해안·해양공학회논문집
    • /
    • 제22권4호
    • /
    • pp.224-229
    • /
    • 2010
  • 선박에 의한 해상교량의 충돌취약도 해석을 수행하였다. 확률변수를 충돌속도와 충돌각으로 하였으며 18,000DWT와 30,000DWT 설계선박에 대해 충돌해석을 수행하였다. 음함수 형태의 변위를 한계상태함수에 적용하기 위해 응답면 기법을 사용하여 충돌응답면을 구성하고 충돌속도를 2 m/s~7m/s까지 총 6개 CASE에 대해 신뢰성 해석을 수행하였다. 신뢰성 해석으로 계산한 파괴확률을 이용하여 충돌취약도 곡선을 표현하고 충돌속도에 대한 중간값과 대수표준편차를 계산하여 해상교량의 위험도를 나타내었다.

충돌회피를 위한 가속도를 고려한 차선 변경 시스템 개발 (Development of Lane Change System considering Acceleration for Collision Avoidance)

  • 강현구;이동휘;허건수
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.81-86
    • /
    • 2013
  • This paper presents the lane change system for collision avoidance. The proposed algorithm for the collision avoidance consists of path generation and path following. Using a calculated TTC (Time to Collision), partial braking is operated and collision avoidance path is generated considering relative distance, velocity and acceleration. Based on the collision avoidance path, desired yaw angle and yaw rate are calculated for the automated path following. The lateral controller is designed by a Lyapunov function approach using 3 D.O.F vehicle model and vehicle parameters. The required steering angle is determined from wheel velocity, longitudinal and lateral velocity in order to follow the desired yaw angle and yaw rate. This system is developed MATLAB/Simulink and its performance is evaluated using the commercial software CarSim.

충돌 후 열차의 차체 가속도 평가 기법 연구 (A Study on the Techniques to Evaluate Carbody Accelerations after a Train Collision)

  • 김준우;구정서
    • 한국소음진동공학회논문집
    • /
    • 제20권5호
    • /
    • pp.477-485
    • /
    • 2010
  • In this study, we suggested several approaches to evaluate the collision acceleration of a carbody under the article 16 of the Korean rolling stock safety regulations. There are various methods to evaluate the rigid body accelerations such as the displacement comparison method by double integration of filtered acceleration data, the velocity comparison method by direct integration of filtered acceleration data, and the analysis method of a velocity-time curve. We compared these methods one another using the 1D dynamic simulation model of Korean high-speed EMU composed of nonlinear springs or bars, dampers, and masses. From the simulation results, the velocity-time curve analysis method and the displacement comparison method are recommended to filter high frequency oscillations and evaluate the maximum and average accelerations of a carbody after a train collision.

열차의 충돌가속도 크기를 평가하기 위한 방법 연구 (A Study on Techniques for Evaluating Collision Acceleration of Rollingstock)

  • 김운곤;김거영;구정서
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.233-237
    • /
    • 2009
  • In this study, we suggest that several approaches to evaluate the collision acceleration value of a car in the article 35 and the guideline 16 of Korean rolling stock safety regulation. There are various methods to evaluate collision acceleration such as; a displacement comparison method by the double integration of filtered acceleration data, a velocity comparison method by the integration of filtered acceleration data, an analysis method of time-velocity curve, or a differential method of time-velocity curve. We compared these methods one another using 1D dynamic simulation model composed of nonlinear dampers, springs and bars, and masses. Also, we applied these methods to a hybrid model, which is made of 3D shell element model and 2D collision dynamics model, in order to evaluate whether 1D force-displacement curve modeling for energy absorbing structures have an effect on the collision acceleration levels or not.

  • PDF

비홀로노믹 모바일 매니퓰레이터의 영공간 투영에 기반한 충돌 회피 (Collision Avoidance Based on Null Space Projection for a Nonholonomic Mobile Manipulator)

  • 김계진;윤인환;송재복
    • 로봇학회논문지
    • /
    • 제17권1호
    • /
    • pp.32-39
    • /
    • 2022
  • Since the mobile platform and the manipulator mounted on it move at the same time in a mobile manipulator, the risk of mutual collision increases. Most of the studies on collision avoidance of mobile manipulators cannot be applied to differential drive type mobile platforms or the end-effector tends to deviate from the desired trajectory for collision avoidance. In this study, a collision avoidance algorithm based on null space projection (CANS) that solves these two problems is proposed. To this end, a modified repulsive force that overcomes the non-holonomic constraints of a mobile platform is generated by adding a virtual repulsive force in the direction of its instantaneous velocity. And by converting this repulsive force into a repulsive velocity and applying it to the null space, the end-effector of the robot avoids a collision while moving along its original trajectory. The proposed CANS algorithm showed excellent performance through self-collision avoidance tests and door opening tests.