• Title/Summary/Keyword: collision reduction

Search Result 158, Processing Time 0.025 seconds

Investigation on the Enhancement of the Flotation Performance in Fine Molybdenum Particles Based on the Probability of Collision Model (충돌확률 모델에 의한 미립 몰리브덴광의 부유선별 효율 향상 연구)

  • Jisu Yang;Kyoungkeun Yoo;Joobeom Seo;Seongsoo Han
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.38-47
    • /
    • 2024
  • Molybdenite is the primary molybdenum resource and is extracted via flotation due to its unique hydrophobic surface. Meanwhile, the grade and crystal size of mined molybdenite are decreasing. As a result, the size of the molybdenum ore required for liberation is decreasing, and the flotation process's feed size input is also decreasing. Therefore, in order to secure molybdenum, it is necessary to perform research on the flotation for the fine molybdenite. In this study, we developed a method to enhance the flotation efficiency of fine molybdenite particles in the range of 5-30 ㎛. The methodology involved implementing bubble size reduction and particle aggregation. Through simulations of bubble-particle collision probability and flotation experiments, we were able to find the ranges of bubble size and particle aggregate size that make fine particles float more effectively. This range provided the conditions for effective flotation of fine molybdenite particles. Therefore, we will implement the flotation conditions established in this study for fine molybdenum ore to improve the flotation process in molybdenum mineral processing plants in the future.

Estimating Traffic Accident Reduction Effect of Road Safety Facilities in Intersesctions (교차로에서의 도로·교통안전시설물의 교통사고 감소효과도 추정)

  • YOON, Yeo Il;LEE, Soo Beom;LIM, Joon Beom;PARK, Kil Soo;MOON, Jeong Sik
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.129-142
    • /
    • 2017
  • Accident Black Spot Improvement Project is the representative road safety intervention to eliminate environmental risk factors on the roadway by installing road safety facilities. Although it is one of the main road safety projects in Korea, there has been a lack of effort analyzing the traffic accident reduction effects of this project. In this study, therefore, we selected 4,171 road black spots from 2004 to 2013 and investigated the traffic accident reduction effects of 5 road safety facilities by using "Comparison Group(C-G)" method. Through the analysis, it was found that the number of traffic accidents were lowered by 4.45% with traffic islands, 32.17% with road paved markers, and 24.13% with speed cameras, respectively. However, 0.61% with pedestrian fencing and 1.67% with skid resistant pavement were increased on the other hand. In addition, we also analyzed traffic accident reduction facilities' performance on specific types of collision mentioned in manual on road safety facilities by Ministry of Land, Infrastructure and Transport. It was shown that the number of bad weather traffic accidents were reduced by 52.96% with road paved markers, pedestrians accidents were reduced by 62.77% with pedestrian fencing and rear-end collisions were reduced by 26.00% with skid resistant pavement.

Assessing the Safety Benefit of an Advanced Vehicular Technology for Protecting Pedestrian(Focused on Active Hood Lift System (AHLS)) (첨단안전차량 효과분석(보행자보호를 위한 Active Hood Lift System (AHLS)을 중심으로))

  • O, Cheol;Gang, Yeon-Su;Kim, Beom-Il;Kim, Won-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.3 s.89
    • /
    • pp.95-102
    • /
    • 2006
  • This study develops a methodology on how to assess the traffic safety benefit of advanced vehicular technology for Protecting pedestrian in pedestrian-vehicle collision. Safety benefit is defined here as the reduction of Pedestrian fatality by employing advanced vehicular technology. As an application of the proposed methodology the safety benefit of active hood lift system (AHLS) is assessed. Both actual accident data analysis and simulation experiment are conducted to establish statistical models that are used for estimating the reduction of pedestrian fatality It is believed that the developed methodology and outcomes would be greatly useful in developing various advanced vehicular technologies and establishing more effective traffic safety policies.

Improvement of EPC Class-1 Anticollision Algorithm for RFID Air-Interface Protocol (무선인식 프로토콜의 EPC 클래스-1 충돌방지 알고리즘 개선)

  • Kang, Bong-Soo;Lim, Jung-Hyun;Kim, Heung-Soo;Yang, Doo-Yeong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.4
    • /
    • pp.10-19
    • /
    • 2007
  • In this paper, Class-1 Air-interface protocols of EPCglobal applied to RFID system in UHF band are analyzed, and the standard anticollision algorithms are realized. Also, the improved anticollision algorithms of the Class-1 Generation-1 and Generation-2 protocol are proposed and the performances of anticollision algorithms are compared. As the results, reduction ratio of total tag recognition time of the improved Generation-1 algorithm is 54.5% for 100 tags and 63.4% for 1000 tags with respect to standard algorithm, respectively. And the reduction ratio of the improved Generation-2 algorithm is 7.9% for 100 tags and 11.7% for 1000 tags. Total recognition times of the improved algorithms are shorter than those of standard algorithms according to increasing the number of tag. Therefore, the improved anticollision algorithm proposed in this paper is the advanced method improving the performance of tag recognition in the RFID system.

Reaction Mechanism of Low Temperature NH3 SCR over MnOx/Sewage Sludge Char (MnOx/Sewage Sludge Char를 이용한 저온 NH3 SCR의 반응 메커니즘)

  • Cha, Jin-Sun;Park, Young-Kwon;Park, Sung Hoon;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.308-311
    • /
    • 2011
  • The reaction mechanism of selective catalytic reduction of NOx over sewage sludge char impregnated with MnOx using $NH_3$ as the reducing agent was investigated. The active Mn phase was shown to be $Mn_3O_4$ from the XRD analysis. Adsorption was the dominant NOx removal mechanism at low temperatures below $150^{\circ}C$ although reduction reaction also contributed partly to the NOx removal at $100{\sim}150^{\circ}C$. The reaction rate constants of NOx removal over non-impregnated and MnOx-impregnated active chars were compared based on experimental results. The MnOx-impregnated char was shown to have a higher reaction rate constant and a higher NOx removal efficiency due to a higher collision coefficient and a lower activation energy. The activation energy for both chars was shown to be relatively low (10~12 kJ/mol) under the experimental conditions of this study.

Development of the Blind Spot Detecting System for Vehicle (차량용 사각지대 감지시스템의 개발)

  • Yoon, Moon-Young;Kim, Se-Hun;Son, Min-Hyuk;Yun, Duk-Sun;Boo, Kwang-Seok;Kim, Heung-Seob
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.34-41
    • /
    • 2009
  • The latest vehicle yields a superior safety and reduction of driving burden by monitoring the driving state of vehicle and its environment with various sensors. To detect other vehicles and objects of the rear left and right-side blind spot area of driver, provide the information about a existence of objects inside the blind spot, and give a signal to avoid collision, this study proposes the intelligent outside rear-view mirror system. This task has substantially complicated several factors. For example, the size, geometry and features of the various vehicles which might enter the monitored zone is varied widely and therefore present various reflective characteristics. This study proposes the optimal specification and configuration of optical system and IR array sensor of blind spot detection system, and shows the results of the performance evaluation of developed system.

Massive Hemorrhage Facial Fracture Patient Treated by Embolization

  • Kim, Moo Hyun;Yoo, Jae Hong;Kim, Seung Soo;Yang, Wan Suk
    • Archives of Craniofacial Surgery
    • /
    • v.17 no.1
    • /
    • pp.28-30
    • /
    • 2016
  • Major maxillofacial bone injury itself can be life threatening from both cardiovascular point of view, as well as airway obstruction. Significant hemorrhage from facial fracture is an uncommon occurrence, and there is little in the literature to guide the management of these patients. We report a 73-year-old male driver who was transported to our hospital after a motor vehicle collision. The patient was hypotensive and tachycardic at presentation and required active fluid resuscitation and transfusion. The patient was intubated to protect the airway. All external attempts to control the bleeding, from packing to fracture reduction, were unsuccessful. Emergency angiogram revealed the bleeding to originate from terminal branches of the sphenopalatine artery, which were embolized. This was associated with cessation of bleeding and stabilization of vital signs. Despite the age and severity of injury, the patient recovered well and was discharged home at 3 months with full employment. In facial trauma patients with intractable bleeding, transcatheter arterial embolization should be considered early in the course of management to decrease mortality rate.

Collision Avoidance Algorithm and System Development for Unmanned Driving Safety of All Terrain Vehicle (무인 운항 시스템의 주행안전을 위한 충돌회피 시스템과 알고리즘 개발)

  • Yun, Duk-Sun;Lim, Ha-Young;Yu, Hwan-Sin;Kim, Jung-Ha
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.104-110
    • /
    • 2005
  • In this paper, unmanned vehicle system and VFF algorithm development with vehicle dynamics is the main topic as a part of Intelligent Transportation System. Unmanned vehicle system is classified by vehicle system and control system. Authors used RC servo motor for longitudinal control via throttle angle, shift lever control, and brake control. For lateral control, authors used step motor, equipped with reduction gear. Unmanned vehicle has nine ultrasonic sensors in front of the unmanned vehicle. After the microcontroller computes the distance between unmanned vehicle and obstacle, the control computer calculates the steering angle enough to avoid the obstacle.

Self-consistent Solution Method of Multi-Subband BTE in Quantum Well Device Modeling (양자 우물 소자 모델링에 있어서 다중 에너지 부준위 Boltzmann 방정식의 Self-consistent한 해법의 개발)

  • Lee, Eun-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.27-38
    • /
    • 2002
  • A new self-consistent mathematical model for semiconductor quantum well device was developed. The model was based on the direct solution of the Boltzmann transport equation, coupled to the Schrodinger and Poisson equations. The solution yielded the distribution function for a two-dimensional electron gas(2DEG) in quantum well devices. To solve the Boltzmann equation, it was transformed into a tractable form using a Legendre polynomial expansion. The Legendre expansion facilitated analytical evaluation of the collision integral, and allowed for a reduction of the dimensionality of the problem. The transformed Boltzmann equation was then discretized and solved using sparce matrix algebra. The overall system was solved by iteration between Poisson, Schrodinger and Boltzmann equations until convergence was attained.

Effect of Hydrocarbons on the Promotion of NO-$NO_2$ Conversion in NonThermal Plasma DeNOx Treatment (비열 플라즈마에 의한 NO의 산화에 탄화수소 첨가제가 미치는 영향)

  • Shin, Hyun-Ho;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.33-46
    • /
    • 2000
  • In the present study, a systematic chemical kinetic calculations were made to investigate the augmentation of NO-$NO_2$ conversion due to the addition of various hydrocarbons (methane, ethylene, ethane, propene, propane) in the nonthermal plasma treatment. It is included in the present conclusion that the reaction between hydrocarbon and oxygen radicals induced by electron collision, is believed to be a primarily process for triggering the overall NO oxidation and the eventual NOx reduction. Upon the completion of the initiating step, various radicals (OH, $NO_2$ etc.) successively produced by hydrocarbon decomposition form the primary path of NO-$NO_2$ conversion. When the initiating step is not activated, hydrocarbon consumption rate appeared to be very low, thereby the targeted level of NO conversion can only be achieved by the addition of more input energy. Present study showed ethylene and propene to have higher affinity with 0 radical under all conditions, thereby both of these hydrocarbons show very fast and efficient NO-$NO_2$ oxidation. It was also shown that propene is superior to ethylene in the aspect of NOx removal.

  • PDF