• 제목/요약/키워드: collision free strategy

검색결과 15건 처리시간 0.022초

신경회로망을 이용한 이중암 로봇의 충돌회피를 위한 최적작업계획 (Optimal Task Planning for Collision-Avoidance of Dual-Arm Robot Using Neural Network)

  • 최우형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.176-181
    • /
    • 2000
  • Collision free task planning for dual-arm robot which perform many subtasks in a common work space can be achieved in two steps : path planning and trajectory planning. path planning finds the order of tasks for each robot to minimize path lengths as well as to avoid collision with static obstacles. A trajectory planning strategy is to let each robot move along its path as fast as possible and delay one robot at its initial position or reduce speed at the middle of its path to avoid collision with the other robot.

  • PDF

Path coordinator by the modified genetic algorithm

  • Chung, C.H.;Lee, K.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1939-1943
    • /
    • 1991
  • Path planning is an important task for optimal motion of a robot in structured or unstructured environment. The goal of this paper is to plan the shortest collision-free path in 3D, when a robot is navigated to pick up some tools or to repair some parts from various locations. To accomplish the goal of this paper, the Path Coordinator is proposed to have the capabilities of an obstacle avoidance strategy[3] and a traveling salesman problem strategy(TSP)[23]. The obstacle avoidance strategy is to plan the shortest collision-free path between each pair of n locations in 2D or in 3D. The TSP strategy is to compute a minimal system cost of a tour that is defined as a closed path navigating each location exactly once. The TSP strategy can be implemented by the Neural Network. The obstacle avoidance strategy in 2D can be implemented by the VGraph Algorithm. However, the VGraph Algorithm is not useful in 3D, because it can't compute the global optimality in 3D. Thus, the Path Coordinator is proposed to solve this problem, having the capabilities of selecting the optimal edges by the modified Genetic Algorithm[21] and computing the optimal nodes along the optimal edges by the Recursive Compensation Algorithm[5].

  • PDF

Recursive compensation algorithm application to the optimal edge selection

  • Chung, C.H.;Lee, K.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.79-84
    • /
    • 1992
  • Path planning is an important task for optimal motion of a robot in structured or unstructured environment. The goal of this paper is to plan the optimal collision-free path in 3D, when a robot is navigated to pick up some tools or to repair some parts from various locations. To accomplish the goal, the Path Coordinator is proposed to have the capabilities of an obstacle avoidance strategy and a traveling salesman problem strategy (TSP). The obstacle avoidance strategy is to plan the shortest collision-free path between each pair of n locations in 2D or in 3D. The TSP strategy is to compute a minimal system cost of a tour that is defined as a closed path navigating each location exactly once. The TSP strategy can be implemented by the Hopfield Network. The obstacle avoidance strategy in 2D can be implemented by the VGraph Algorithm. However, the VGraph Algorithm is not useful in 3D, because it can't compute the global optimality in 3D. Thus, the Path Coordinator is used to solve this problem, having the capabilities of selecting the optimal edges by the modified Genetic Algorithm and computing the optimal nodes along the optimal edges by the Recursive Compensation Algorithm.

  • PDF

다중로봇의 충돌회피전략 구현 (Implementation of Collision Free Strategy for Multi-Mobile Robot)

  • 김동원;김주형;곽환주
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2010년도 제42차 하계학술발표논문집 18권2호
    • /
    • pp.51-54
    • /
    • 2010
  • 본 논문에서는 포텐셜 필드 방법과 퍼지로직 시스템을 이용하여 멀티 모바일 로봇의 충돌회피를 위한 경로계획을 연구한다. 잘 알려진 포텐셜 필드 방법은 멀티 모바일 로봇 시스템에 있어서 각각의 로봇에 대한 전역경로를 계획하기 위해 사용되었으며, 퍼지로직 시스템은 각 로봇에 근접하는 혹은 진행하는 로봇의 경로를 가로막는 장애물과의 충돌을 피하고 안전하게 목적지에 도달하기 위한 지역경로를 계획하기 위해 이용되었다.

  • PDF

신경회로망을 이용한 8축 로봇의 충돌회피 경로계획 (Collision-Avoidance Task Planning for 8 Axes-Robot Using Neural Network)

  • 최우형;신행봉;윤대식;문병갑;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.184-189
    • /
    • 2002
  • Collision free task planning for dual-arm robot which perform many subtasks in a common work space can be achieved in two steps : path planning and trajectory planning. Path planning finds the order of tasks for each robot to minimize path lengths as well as to avoid collision with static obstacles. A trajectory planning strategy is to let each robot move along its path as fast as possible and delay one robot at its initial position or reduce speed at the middle of its path to avoid collision with the other robot.

  • PDF

신경회로망을 이용한 Dual-Arm 로봇의 충돌회피 최적작업계획 (Optimal Collision-Avoidance Task Planning for Dual-Arm Using Neural Network)

  • 최우형;신행봉;윤대식;문병갑;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.244-249
    • /
    • 2001
  • Collision free task planning for dual-arm robot which perform many subtasks in a common work space can be achieved in two steps : path planning and trajectory planning. Path planning finds the order of tasks for each robot to minimize path lengths as well as to avoid collision with static obstacles. A trajectory planning strategy is to let each robot move along its path as fast as possible and delay one robot at its initial position or reduce speed at the middle of its path to avoid collision with the other robot.

  • PDF

뉴럴 네트워크를 이용한 Dual-Arm 로봇의 충돌회피 최적작업계획 (Optimal Collision-Avoidance Task Planning for Dual-Arm Using Neural Network)

  • 최우형;정동연;배길호;김인수;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.113-118
    • /
    • 2000
  • Collision free task planning for dual-arm robot which perform many subtasks in a common work space can be achieved in two steps : path planning and trajectory planning. Path planning finds the order of tasks for each robot to minimize path lengths as well as to avoid collision with static obstacles. A trajectory planning strategy is to let each robot move along its path as fast as possible and delay one robot at its initial position or reduce speed at the middle of its path to avoid collision with the other robot.

  • PDF

유전자 알고리즘을 이용한 충돌회피 경로계획 (Collision-free Path Planning Using Genetic Algorithm)

  • 이동환;조연;이홍규
    • 한국항행학회논문지
    • /
    • 제13권5호
    • /
    • pp.646-655
    • /
    • 2009
  • 본 논문은 로봇 충돌회피 경로계획의 문제점을 해결하기 위해 진화된 모델에 근거한 새로운 경로탐색 전략을 소개한다. 최적화된 지능형 검색 방법으로 잘 알려진 유전자 알고리즘을 이용하여 로봇 경로계획 방법을 설계하였다. 염색체 안에 있는 유전자 인자로 경로점을 고찰해보면 주어진 맵에 대한 가능한 해법이제공된다. 생성된 염색체 간의 거리가 먼 경우 유사한 염색체에 대한 적합도로 간주할 수 있다. 경로계획에 있어 본 논문에서 제안한 유전자 알고리즘의 유효성을 증명하기위해 다양한 방법으로 시뮬레이션을 실시하였으며, 제안한 경로 검색 방법은 정지된 장애물이나 복잡한 장애물에도 사용될 수 있음을 증명하였다.

  • PDF

Fuzzy Logic Based Navigation for Multiple Mobile Robots in Indoor Environments

  • Zhao, Ran;Lee, Dong Hwan;Lee, Hong Kyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권4호
    • /
    • pp.305-314
    • /
    • 2015
  • The work presented in this paper deals with a navigation problem for multiple mobile robot system in unknown indoor environments. The environment is completely unknown for all the robots and the surrounding information should be detected by the proximity sensors installed on the robots' bodies. In order to guide all the robots to move along collision-free paths and reach the goal positions, a navigation method based on the combination of a set of primary strategies has been developed. The indoor environments usually contain convex and concave obstacles. In this work, a danger judgment strategy in accordance with the sensors' data is used for avoiding small convex obstacles or moving objects which include both dynamic obstacles and other robots. For big convex obstacles or concave ones, a wall following strategy is designed for dealing with these special situations. In this paper, a state memorizing strategy is also proposed for the "infinite repetition" or "dead cycle" situations. Finally, when there is no collision risk, the robots will be guided towards the targets according to a target positioning strategy. Most of these strategies are achieved by the means of fuzzy logic controllers and uniformly applied for every robot. The simulation experiments verified that the proposed method has a positive effectiveness for the navigation problem.

무선 메쉬 네트워크에서의 효율적인 코드할당 알고리즘에 대한 연구 (An Efficient Code Assignment Algorithm in Wireless Mesh Networks)

  • 여재현
    • Journal of Information Technology Applications and Management
    • /
    • 제15권1호
    • /
    • pp.261-270
    • /
    • 2008
  • Wireless Mesh Networks (WMNs) have emerged as one of the new hot topics in wireless communications. WMNs have been suggested for use in situations in which some or all of the users are mobile or are located in inaccessible environments. Unconstrained transmission in a WMN may lead to the time overlap of two or more packet receptions, called collisions or interferences, resulting in damaged useless packets at the destination. There are two types of collisions; primary collision, due to the transmission of the stations which can hear each other, and hidden terminal collision, when stations outside the hearing range of each other transmit to the same receiving stations. For a WMN, direct collisions can be minimized by short propagation and carrier sense times. Thus, in this paper we only consider hidden terminal collision while neglecting direct collisions. To reduce or eliminate hidden terminal collision, code division multiple access (CDMA) protocols have been introduced. The collision-free property is guaranteed by the use of spread spectrum communication techniques and the proper assignment of orthogonal codes. Such codes share the fixed channel capacity allocated to the network in the design stage. Thus, it is very important to minimize the number of codes while achieving a proper transmission quality level in CDMA WMNs. In this paper, an efficient heuristic code assignment algorithm for eliminating hidden terminal collision in CDMA WMNs with general topology.

  • PDF