• Title/Summary/Keyword: collision accident

Search Result 463, Processing Time 0.024 seconds

A Comparative Study on the Liability Share of the Accident of Unlawful Action by Ship and Car at Sea and Shore Traffic (교통법규 미준수에 의한 선박사고와 자동차사고의 책임비율에 대한 비교 고찰)

  • Kim, Se-Won;Kim, Jong-Kwan;Jung, Woo-Ri
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.13-14
    • /
    • 2016
  • Many ships' collision accidents occur due to unlawful action at sea. And also at shore traffic, many car collision accidents occur due to unlawful action. Therefore In this study we analyzes actual collision accidents at sea with the regards of liability. and search and analyze similar car collision accidents at shore traffic to compare it with the ship collision. In result, this study suggests the liabilities of the two different types accidents are needed to change more reasonable liability apportionment.

  • PDF

Reconstruction Analysis of Vehicle-pedestrian Collision Accidents: Calculations and Uncertainties of Vehicle Speed (차량-보행자 충돌사고 재구성 해석: 차량 속도 계산과 불확실성)

  • Han, In-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.82-91
    • /
    • 2011
  • In this paper, a planar model for mechanics of a vehicle/pedestrian collision incorporating road gradient is derived to evaluate the pre-collision speed of vehicle. It takes into account a few physical variables and parameters of popular wrap and forward projection collisions, which include horizontal distance traveled between primary and secondary impacts with the vehicle, launch angle, center-of-gravity height at launch, distance from launch to rest, pedestrian-ground drag factor, the pre-collision vehicle speed and road gradient. The model including road gradient is derived analytically for reconstruction of pedestrian collision accidents, and evaluates the vehicle speed from the pedestrian throw distance. The model coefficients have physical interpretations and are determined through direct calculation. This work shows that the road gradient has a significant effect on the evaluation of the vehicle speed and must be considered in accident cases with inclined road. In additions, foreign/domestic empirical cases and multibody dynamic simulation results are used to construct a least-squares fitted model that has the same structure of the analytical one that provides an estimate of the vehicle speed based on the pedestrian throw distance and the band within which the vehicle speed would be expected to be in 95% of cases.

A clinical analysis of Admission Patients in Korean Medicine Hospital due to Traffic Accident (교통사고로 한방병원에 입원한 환자에 대한 후향적 분석 - 일개 한방병원을 중심으로)

  • Jo, Min Gun;Ahn, Hun Mo;Na, Sam Sik
    • Journal of Korean Medical Ki-Gong Academy
    • /
    • v.17 no.1
    • /
    • pp.109-126
    • /
    • 2017
  • Objectives : The purpose of this study was to investigate the characteristics of inpatients who were admitted to Korean medicine hospital due to traffic accident. Methods : We analyzed statistical study in 137 patients, who had admitted to M korean medicine hospital, in Gimpo city, Gyeonggi Province from January 1st, 2017 to June 31th, 2017 according to medical charts. Results : 1. In distribution according to age and sex, people in their 50s numbered the most. The 137 inpatients comprised of male (46.0%) and female (54.0%). 2. In distribution according to types of accident, Rear-end collision accident numbered the most (34.3%), followed by Frontal collision (21.2%) and Lateral collision (14.6%). 3. In distribution according to duration of treatment, most (54.7%) patients discharged within 1 week, followed by 1 week to 2 weeks(37.2%) 4. In distribution according to mean elevation of symptoms, Neck pain was the most (75.9%) symptom, followed by Low back pain (67.2%), Shoulder pain (46.0%) and Headache (37.2%). 5. In distribution according to treatment results, symptom improvement was the most (62.8%), followed by excellent (19.7%), mild improvement (14.6%). 6. In distribution according to duration of treatment, Most frequently prescribed herbal decoction was Tongdosan (45.7%), followed by Dangguijakyaksangagam (29.6%), and most frequently prescribed extract powder was Yunkyopaedocksan and Ojeoksan (12.7%). Conclusions : This study shows that aftereffects from the traffic accident tend to occur with various symptoms in various age groups. Korean medicine treatments are effective in patient who were admitted to Korean medicine hospital due to traffic accident.

Effects of Inter-Vehicle Information Propagation on Chain Collision Accidents (차량간 정보전파의 연쇄추돌 교통사고에 대한 효과)

  • Chang, Hyun-ho;Yoon, Byoung-jo;Jeong, So-Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.303-310
    • /
    • 2018
  • One of most shocking headlines is a serious chain collision accident (CCA). The development of CCA has a temporal and spatial locality, and the information of the CCA is time-critical. Due to these characteristics of CCA, traffic accident information should be rapidly propagated to drivers in order to reduce chain collisions, right after the first accident occurs. Inter-vehicle communication (IVC) based on ad-hoc communication is one of promising alternatives for locally urgent information propagation. Despite this potential of IVC, research for the effects of IVC on the reduction of CCA has not been reported so far. Therefore, this study develops the parallel platform of microscopic vehicle and IVC communication simulators and then analyses the effects of IVC on the reduction of the second collision related to a series of vehicles. To demonstrate the potential of the IVC-based propagation of urgent traffic accident information for the reduction of CCA, the reduction of approaching-vehicle speed, the propagation speed of accident information, and then the reduction of CCA were analysed, respectively, according to scenarios of combination of market rates and traffic volumes. The analysis results showed that CCA can be effectively reduced to 40~60% and 80~82% at the penetration rates of 10% and 50%, respectively.

Analysis of marine accident probability in Mokpo waterways

  • Kim, Kwang-Il;Park, Gye-Kark;Jeong, Jung-Sik
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.729-733
    • /
    • 2011
  • The maritime risk assessment is important not only to evaluate the safety level of the ports and waterways but also to reduce potential maritime accidents at sea in terms of the proactive measures of the maritime accidents. In this paper, the collision risk assessment in Mokpo waterways has been carried out based on the IALA recommended model, IWRAP. To evaluate the accident probabilities in Mokpo waterways, all data of vessels were collected from AIS and Radar observations data and the computer simulations were carried out. To assess the risk on the traffic, the scenario-base approach has been applied to the Mokpo waterway by using the maritime accident statics over the past 5 years.

Marine Accident Cause Investigation using M&S System (고도 정밀 M&S 시스템을 이용한 해난사고 원인규명)

  • Lee, Sang-Gab
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.36-37
    • /
    • 2014
  • It is necessary to develop highly sophisticated Modeling & Simulation (M&S) system for the scientific investigation of marine accident causes and for the systematic reproduction of accidental damage procedure. To ensure an accurate and reasonable prediction of marine accidental causes, such as collision, grounding and flooding, full-scale ship M&S simulations would be the best approach using hydrocode, such as LS-DYNA code, with its Fluid-Structure Interaction (FSI) analysis technique. The objectivity of this paper is to present three full-scale ship collision, grounding and flooding simulation results of marine accidents, and to show the possibility of the scientific investigation of marine accident causes using highly sophisticated M&S system.

  • PDF

A Study on the Correlation between Effective Impact Speed and the Severity of Collision Accidents with Fishing Vessels (유효충돌속도에 따른 어선 충돌사고 피해 상관성에 관한 연구)

  • Hyungoo Park;Young-Soo Park;Sang-Won Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.202-211
    • /
    • 2023
  • In maritime accidents, collisions involving fishing vessels are more frequent and severe than those involving other types of vessels. Previous cases of collision accidents caused by fishing vessels causing serious damage implied that fishing vessels maintained high speeds until just before the collision and that they collided with much larger vessels. This study investigated the correlation between the severity of ship damage resulting from fishing vessel collisions and the vessel's speed. The effective impact speed commonly used in the road transport sector was utilized to analyze ship collision accidents. The study collected collision data between fishing vessels and between fishing vessels and non-fishing vessels from accident investigation reports from 2016 to 2022. The effective impact speed was calculated for a total of 617 vessels. After using binary and multinomial logistic regression methodology, the analysis was carried out with effective impact speed as the independent variable and severity of accident as the dependent variable. The analysis revealed a statistically significant correlation between the effective impact speed and the severity of ship damage, indicating that the severity of ship damage is influenced not only by the effective impact speed but also by the tonnage of the vessel.

A study on Pedestrian Accident Reconstruction Models: Comparison and Improvement (보행자-차량 충돌사고 재현모형 비교분석 및 개선 연구)

  • Jo, Jeong-Il;O, Cheol;Kim, Nam-Il;Jang, Myeong-Sun
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.4
    • /
    • pp.69-77
    • /
    • 2007
  • This study presents comparison results for pedestrian accident reconstruction models representing the relationship between collision speed and horizontal distance that a body travels while falling and sliding. A set of 49 reliable pedestrian accident cases are applied to compare the existing reconstruction models. In addition, the authors investigate the effects of a set of parameters associated with the effects of the frontal shape of a vehicle on the horizontal distance a pedestrian travels while falling and sliding. It has been revealed that the length of the bumper is the most dominant factor to affect the horizontal distance of pedestrian travel after collision. Further analyses utilizing more accident data need to conducted to develop a more accurate and reliable reconstruction model.

Development of Collision Safety Control Logic using ADAS information and Machine Learning (머신러닝/ADAS 정보 활용 충돌안전 제어로직 개발)

  • Park, Hyungwook;Song, Soo Sung;Shin, Jang Ho;Han, Kwang Chul;Choi, Se Kyung;Ha, Heonseok;Yoon, Sungroh
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.60-64
    • /
    • 2022
  • In the automotive industry, the development of automobiles to meet safety requirements is becoming increasingly complex. This is because quality evaluation agencies in each country are continually strengthening new safety standards for vehicles. Among these various requirements, collision safety must be satisfied by controlling airbags, seat belts, etc., and can be defined as post-crash safety. Apart from this safety system, the Advanced Driver Assistance Systems (ADAS) use advanced detection sensors, GPS, communication, and video equipment to detect the hazard and notify driver before the collision. However, research to improve passenger safety in case of an accident by using the sensor of active safety represented by ADAS in the existing passive safety is limited to the level that utilizes the sudden braking level of the FCA (Forward Collision-avoidance Assist) system. Therefore, this study aims to develop logic that can improve passenger protection in case of an accident by using ADAS information and driving information secured before a collision. The proposed logic was constructed based on LSTM deep learning techniques and trained using crash test data.