• Title/Summary/Keyword: collapse probability

Search Result 145, Processing Time 0.024 seconds

Integrity Assessment of Sharp Flaw in CANDU Pressure Tube Using Probabilistic Fracture Mechanics (확률론적 파괴역학을 도입한 CANDU 압력관의 예리한 결함에 대한 건전성평가)

  • Lee, Jun-Seong;Gwak, Sang-Rok;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.653-659
    • /
    • 2002
  • This paper describes a probabilistic fracture mechanics(PFM) analysis based on Monte Carlo(MC) simulation. In the analysis of CANDU pressure tube, the depth and aspect ratio of an initial semi-elliptical surface crack, a fracture toughness value and delayed hydride cracking(DHC) velocity are assumed to be probabilistic variables. As an example, some failure probabilities of piping and CANDU pressure tube are calculated using MC method with the stratified sampling MC technique, taking analysis conditions of normal operations. In the stratified MC simulation, a sampling space of probabilistic variables is divided into a number of small cells. For the verification of analysis results, a comparison study of the PFM analysis using other commercial code is carried out and a good agreement was observed between those results.

Seismic probabilistic risk assessment of weir structures considering the earthquake hazard in the Korean Peninsula

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2017
  • Seismic safety evaluation of weir structure is significant considering the catastrophic economical consequence of operational disruption. In recent years, the seismic probabilistic risk assessment (SPRA) has been issued as a key area of research for the hydraulic system to mitigate and manage the risk. The aim of this paper is to assess the seismic probabilistic risk of weir structures employing the seismic hazard and the structural fragility in Korea. At the first stage, probabilistic seismic hazard analysis (PSHA) approach is performed to extract the hazard curve at the weir site using the seismic and geological data. Thereafter, the seismic fragility that defines the probability of structural collapse is evaluated by using the incremental dynamic analysis (IDA) method in accordance with the four different design limit states as failure identification criteria. Consequently, by combining the seismic hazard and fragility results, the seismic risk curves are developed that contain helpful information for risk management of hydraulic structures. The tensile stress of the mass concrete is found to be more vulnerable than other design criteria. The hazard deaggregation illustrates that moderate size and far source earthquakes are the most likely scenario for the site. In addition, the annual loss curves for two different hazard source models corresponding to design limit states are extracted.

Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)

  • Khorami, M.;Khorami, M.;Alvansazyazdi, M.;Shariati, M.;Zandi, Y.;Jalali, A.;Tahir, M.M.
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.531-538
    • /
    • 2017
  • In this paper, the seismic behavior of BRBF structures is studied and compared with special concentric braced frames (SCBF). To this purpose, three BRBF and three SCBF structures with 3, 5 and 10 stories are designed based on AISC360-5 and modelled using OpenSees. These structures are loaded in accordance with ASCE/SEI 7-10. Incremental nonlinear dynamic analysis (IDA) are performed on these structures for 28 different accelerograms and the median IDA curves are used to compare seismic capacity of these two systems. Results obtained, indicates that BRBF systems provide higher capacity for the target performance level in comparison with SCBF systems. And structures with high altitude (in this study, 5 and 10 stories) with the possibility of exceeding the collapse prevention performance level, further than lower altitude (here 3 floors) structures.

Probabilistic seismic evaluation of buckling restrained braced frames using DCFD and PSDA methods

  • Asgarian, Behrouz;Golsefidi, Edris Salehi;Shokrgozar, Hamed Rahman
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.105-123
    • /
    • 2016
  • In this paper, using the probabilistic methods, the seismic demand of buckling restrained braced frames subjected to earthquake was evaluated. In this regards, 4, 6, 8, 10, 12 and 14-storybuildings with different buckling restrained brace configuration (including diagonal, split X, chevron V and Inverted V bracings) were designed. Because of the inherent uncertainties in the earthquake records, incremental dynamical analysis was used to evaluate seismic performance of the structures. Using the results of incremental dynamical analysis, the "capacity of a structure in terms of first mode spectral acceleration", "fragility curve" and "mean annual frequency of exceeding a limit state" was determined. "Mean annual frequency of exceeding a limit state" has been estimated for immediate occupancy (IO) and collapse prevention (CP) limit states using both Probabilistic Seismic Demand Analysis (PSDA) and solution "based on displacement" in the Demand and Capacity Factor Design (DCFD) form. Based on analysis results, the inverted chevron (${\Lambda}$) buckling restrained braced frame has the largest capacity among the considered buckling restrained braces. Moreover, it has the best performance among the considered buckling restrained braces. Also, from fragility curves, it was observed that the fragility probability has increased with the height.

A Reliability Analysis of a Guyed Tower (Guyed Tower의 신뢰성 해석)

  • Tae-B.,Ha;Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.29-35
    • /
    • 1987
  • As offshore activities move into deeper ocean, conventional fixed-base platforms drastically increase in size and cost, One of alternatives available is a guyed tower, in which environmental loads are supported by guylines instead of structural members. The guying system of the guyed tower is designed on one hand to be stiff enough to limit the structural displacement in normal operations, but on the other hand to be soft enough to permit large slow sways during the presence of design-level storms. This compliancy provides an efficient means of withstanding harsh environment so that the disproportionate increase in size of deep water platforms can be kept to a rational limit. Novel configurations contain always some degrees of potential risks mainly due to the lack of experience. The most critical hazard inherent to a guyed tower may be the pullout of anchor piles. Once it happens, the guyline fails to function and it may eventually lead to the total collapse of the system. It is the aim of this paper to discuss and quantify the anchor-pullout risk of a guyed tower. A stochastic analysis is made for evaluating the first-upcrossing probability of the tension acting on anchor piles over the uplift capacity. Nonlinearities involved in the mooring stiffness and hydrodynamics are taken into account by using time-domain analysis. A simplified two dimensional dynamic model is developed to exemplify the underlying concept. Real hurricane data in the Gulf of Mexico spanning over 70 years are incorporated in a numerical example of which result clearly indicates highly potential risk of anchor pullout.

  • PDF

Effect of sequential earthquakes on evaluation of non-linear response of 3D RC MRFs

  • Oggu, Praveen;Gopikrishna, K.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.279-293
    • /
    • 2021
  • Most of the existing seismic codes for RC buildings consider only a scenario earthquake for analysis, often characterized by the response spectrum at the specified location. However, any real earthquake event often involves occurrences of multiple earthquakes within a few hours or days, possessing similar or even higher energy than the first earthquake. This critically impairs the rehabilitation measures thereby resulting in the accumulation of structural damages for subsequent earthquakes after the first earthquake. Also, the existing seismic provisions account for the non-linear response of an RC building frame implicitly by specifying a constant response modification factor (R) in a linear elastic design. However, the 'R' specified does not address the changes in structural configurations of RC moment-resisting frames (RC MRFs) viz., building height, number of bays present, bay width, irregularities arising out of mass and stiffness changes, etc. resulting in changed dynamic characteristics of the structural system. Hence, there is an imperative need to assess the seismic performance under sequential earthquake ground motions, considering the adequacy of code-specified 'R' in the representation of dynamic characteristics of RC buildings. Therefore, the present research is focused on the evaluation of the non-linear response of medium-rise 3D RC MRFs with and without vertical irregularities under bi-directional sequential earthquake ground motions using non-linear dynamic analysis. It is evident from the results that collapse probability increases, and 'R' reduces significantly for various RC MRFs subjected to sequential earthquakes, pronouncing the vulnerability and inadequacy of estimation of design base shear by code-specified 'R' under sequential earthquakes.

Nuclear Weapons Deployment and Diplomatic Bargaining Leverage: The Case of the January 2018 Hawaiian Ballistic Missile Attack False Alarm

  • Benedict E. DeDominicis
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.110-134
    • /
    • 2023
  • North Korea's development and deployment of nuclear weapons increases Pyongyang's diplomatic bargaining leverage. It is a strategic response to counteract the great expansion in US leverage with the collapse of the USSR. Post-Cold War American influence and hegemony is justified partly by claiming victory in successfully containing an allegedly imperialist Soviet Union. The US created and led formal and informal international institutions as part of its decades-long containment grand strategy against the USSR. The US now exploits these institutions to expedite US unilateral global preeminence. Third World regimes perceived as remnants of the Cold War era that resist accommodating to American demands are stereotyped as rogue states. Rogue regimes are criminal offenders who should be brought to justice, i.e. regime change is required. The initiation of summit diplomacy between US President Trump and North Korean leader Kim Jong-un occurred following the January 2018 Hawaiian ballistic missile false alarm. This event and its political consequences illustrate the efficacy of nuclear weapons as bargaining leverage for so-called rogue actors. North Korea is highly unlikely to surrender those weapons that were the instigation for the subsequent summit diplomacy that occurred. A broader, critical trend-focused strategic analysis is necessary to adopt a longer-term view of the on-going Korean nuclear crisis. The aim would be to conceptualize long-term policies that increase the probability that nuclear weapons capability becomes a largely irrelevant issue in interaction between Pyongyang, Seoul, Beijing and Washington.

Sewer CCTV Inspection Prioritization Based on Risk Assessment (위험도 기반의 하수관로 CCTV 조사 우선순위 결정 연구)

  • Son, Jooyoung;Lee, Jaehyun;Oh, Jeill
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.585-592
    • /
    • 2017
  • Most sewer lines buried in the city are likely to be collapsed due to serious aging. Also, due to the high concentration of development and high population density and traffic, the collapse of the sewer will cause enormous social and economic damage. Therefore, proactive maintenance is required to prevent accidents caused by deteriorated sewer pipe. In order to utilize limited budget effectively, risk-based prioritization methods should be proposed that simultaneously consider the consequence of failure and the probability of failure. In this study, the method of risk-based prioritization of sewer was examined by reviewing various cases of overseas studies and applied to the urban sub-catchment. First, the impact factors that can be secured through the sewer GIS DB in Seoul were derived, and the weight, sub-criteria, and impact score of each impact factor were determined and the consequence of failure was calculated by weight sum method. In addition, the probability of failure was calculated by dividing the service life by the estimated useful life, and the consequence of failure and the probability of failure were classified into five grades by the Jenks natural breaks classification method. The prioritization method was applied to sub-catchment in the Seoul to derive a risk matrix and a risk grade. As a result, 26% of all subjects were selected as the inspection priority subjects with 4-5 risk grade. Therefore, using the risk-based CCTV prioritization methodology, it will be possible to systematically determine the objects that need investigation first.

GEOTECHNICAL DESIGNS OF THE SHIP IMPACT PROTECTION SYSTEM FOR INCHEON BRIDGE

  • Choi, Sung-Min;Oh, Seung-Tak;Park, Sang-Il;Kim, Sung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.72-77
    • /
    • 2010
  • The Incheon Bridge, which was opened to the traffic in October 2009, is an 18.4 km long sea-crossing bridge connecting the Incheon International Airport with the expressway networks around the Seoul metropolitan area by way of Songdo District of Incheon City. This bridge is an integration of several special featured bridges and the major part of the bridge consists of cable-stayed spans. This marine cable-stayed bridge has a main span of 800 m wide to cross the vessel navigation channel in and out of the Incheon Port. In waterways where ship collision is anticipated, bridges shall be designed to resist ship impact forces, and/or, adequately protected by ship impact protection (SIP) systems. For the Incheon Bridge, large diameter circular dolphins as SIP were made at 44 locations of the both side of the main span around the piers of the cable-stayed bridge span. This world's largest dolphin-type SIP system protects the bridge against the collision with 100,000 DWT tanker navigating the channel with speed of 10 knots. Diameter of the dolphin is up to 25 m. Vessel collision risk was assessed by probability based analysis with AASHTO Method-II. The annual frequency of bridge collapse through the risk analysis for 71,370 cases of the impact scenario was less than $0.5{\times}10^{-4}$ and satisfies design requirements. The dolphin is the circular sheet pile structure filled with crushed rock and closed at the top with a robust concrete cap. The structural design was performed with numerical analyses of which constitutional model was verified by the physical model experiment using the geo-centrifugal testing equipment. 3D non-linear finite element models were used to analyze the structural response and energy-dissipating capability of dolphins which were deeply embedded in the seabed. The dolphin structure secures external stability and internal stability for ordinary loads such as wave and current pressure. Considering failure mechanism, stability assessment was performed for the strength limit state and service limit state of the dolphins. The friction angle of the crushed stone as a filling material was reduced to $38^{\circ}$ considering the possibility of contracting behavior as the impact.

  • PDF

Analysis of Influence for Breach Flow According to Asymmetry of Breach Cross-section (제방붕괴 형상의 비대칭성에 따른 붕괴흐름의 영향 분석)

  • Kim, Sooyoung;Choi, Seo-hye;Lee, Seung Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.557-565
    • /
    • 2016
  • The risk of collapse in hydraulic structures has become more elevated, due to the increased probability and scale of flooding caused by global warming and the resulting abnormal climatic conditions. When a levee, a typical hydraulic structure, breaks, an enormous breach flow pours into the floodplain and much flood damage then occurs. It is important to accurately calculate the breach discharge in order to predict this damage. In this study, the variation of the breach discharge with the asymmetry in the cross-section of the levee breach was analyzed. Through hydraulic experiments, the cross-section of the breach was analyzed during the collapse using the BASD (Bilateral ASymmetry Degree), which was developed to measure the degree of asymmetry. The relationship of the breach discharge was identified using the BASD. Additionally, the variation of the breach flow measured by the BASD was investigated through a 3-D numerical analysis under the same flow conditions as those in the experiment. It was found that the assumption of a rectangular breach cross-section, which is generally used for the estimation of the inundation area, can cause the breach discharge to be overestimated. According to the BASD, the breach flow is decreased by the interference effect in the breach section of the levee. If the breach flow is calculated while considering the BASD in the numerical analysis of the flooding, it is expected that the predicted inundation area can be estimated accurately.