• Title/Summary/Keyword: collapse capacity

Search Result 354, Processing Time 0.021 seconds

A case study of digital intermediate space designed - The focus on the consumer community - (디지털 매개공간 유형에 관한 사례 연구 - 수용자 커뮤니티를 중심으로 -)

  • 서동진;임종훈
    • Korean Institute of Interior Design Journal
    • /
    • no.29
    • /
    • pp.281-288
    • /
    • 2001
  • It shows 21st century as a networking society that is moving up the concept of global town and being industrialized with regional and personal connections. Individual's original idea and variety of 21th century may be respected by such environmental change, and age (Literary, human axis, technology axis, nature axis, kaining farming axis are central keyword) of culture that cultural capacity of individual becomes important fetters that create added value is forecasted to become. The moaning for space that is unemployment enemy by change of conceptional environment about cultural life and agreeable quality of life by development of Information-Communication technology may be required newly. As it does interaction along with development of science technique and Information-Communication technology, the future environment of various that complex! Is predicted to form network environment (existence space, cyberspace) newly. Human central interest is risen in technology balance hereupon, and these characteristic escaped in physical system that do with functional special quality and require human central and sensitive interaction. First, if examine about phenomenon by Digitize and chance aspect that is risen in 21th century, Digitize is time that action occurs fusion Tuesday that is various and Blur phenomenon of city·space, and the period to collapse the border between several individual. Second, importance more than man-centered and sensitive aspect of functional physical system is risen by digital age with development of technology medium, and as the five digital senses showed up, it suggests a sensual of the times and therefore the interest and direction get set up for the sensual sides of consumers. Third, special quality is, medium enemy by that digital space connotes meaning disk floret, variability, transparency, space red of extensity etc.. to burn and is digitalised, can be risen by symbolic, original individualities and emotional communication's the importance is required sensitivity enemy who is sympathy horn by fusion anger of individual. Technology of new media may open direction of new communication through interface that did not enjoy so far is going to supply new means that can express own to human

  • PDF

Seismic Safety Assessment of Long Period Structures Base on Elastic/Inelastic Response Characteristics (장주기구조물의 탄소성응답특성을 고려한 지진안전성 평가)

  • Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.52-58
    • /
    • 2011
  • The earthquake characteristic assessment of social overhead facilities would be an important examination issue for seismic capacity enhancement. This study is intended to reasonably evaluate the structural behavior of longperiod frame structures considering near-fault and far-fault earthquake characteristics. Elastic/inelastic time history analyses were performd by selecting the objective structure which can precisely reflect the effect of input ground motion. Based on the result of numerical analysis, we have investigated response aspects of shear force, moment, acceleration and displacement according to earthquake characteristics. Moreover, in order to understand the inelastic behavior of the objective structure, we have analyzed and compared collapse modes by considering the occurrence process of plastic hinges. The outcome of this research is expected to provide the basic information for the seismic safety assessment of long-period frame structures.

Numerical Study of Agitation Performance in the Mud Tank of On-shore Drilling (육상 시추용 머드탱크의 교반성능에 대한 수치해석적 연구)

  • Hwang, Jong-Duck;Ku, Hak-Keun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.617-626
    • /
    • 2020
  • The drilling mud is essentially used in oil and gas development. There are several roles of using the drilling mud, such as cleaning the bottomhole, cooling and lubricating the drill bit and string, transporting the cuttings to the surface, keeping and adjusting the wellbore pressure, and preventing the collapse of the wellbore. The fragments from rocks and micro-sized bubbles generated by the high pressure are mixed in the drilling mud. The systems to separate those mixtures and to keep the uniformly maintained quality of drilling mud are required. In this study, the simulation is conducted to verify the performance of the mud tank's agitation capacity. The primary role of the mud tank is the mixing of mud at the surface with controlling the mud condition. The container type is chosen as a mud tank pursuing efficient transport and better management of equipment. The single- and two-phase simulations about the agitation in the mud tank are performed to analyze and identify the inner flow behavior. The convergence of results is obtained for the vertical- and axis-direction velocity vector fields based on the grid-dependency tests. The mixing time analysis depending on the multiphase flow conditions indicates that the utilization of a two-stepped impeller with a smaller size provides less time for mixing. This study's results are expected to be utilized as the preliminary data to develop the mixing and integrating equipment of the onshore drilling mud system.

Seismic Capacity according to Structural System of High-rise Apartment (고층 아파트 구조시스템에 따른 내진성능 분석)

  • Lee, Minhee;Cho, So-Hoon;Kim, Jong-Ho;Kim, Hyung-Do
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.149-154
    • /
    • 2019
  • The structural system of domestic high-rise apartments can be divided into two parts; the core wall system, which is composed of walls concentrated in the center and the shear wall system, which comprises a great number of walls distributed in the plan. In order to analyze the lateral behavior of each system, buildings with typical domestic high-rise apartment plans were selected and nonlinear static analysis was performed to investigate the their collapse mechanism. From the force-displacement relation derived from nonlinear static analysis, response modification factor was evaluated by calculating the overstrengh and ductility factor, which are important in the seismic response. The ductility of core wall system is small, but as it is governed by wind load, its overstrength is greatly estimated, and its response modification factor is calculated by the overstrengh factor. Due to a large number of walls, shear wall system has a large ductility, making the response modification factor considerably large.

Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading

  • Abedini, Masoud;Zhang, Chunwei
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.441-461
    • /
    • 2021
  • Reinforced concrete (RC) columns are crucial in building structures and they are of higher vulnerability to terrorist threat than any other structural elements. Thus it is of great interest and necessity to achieve a comprehensive understanding of the possible responses of RC columns when exposed to high intensive blast loads. The primary objective of this study is to derive analytical formulas to assess vulnerability of RC columns using an advanced numerical modelling approach. This investigation is necessary as the effect of blast loads would be minimal to the RC structure if the explosive charge is located at the safe standoff distance from the main columns in the building and therefore minimizes the chance of disastrous collapse of the RC columns. In the current research, finite element model is developed for RC columns using LS-DYNA program that includes a comprehensive discussion of the material models, element formulation, boundary condition and loading methods. Numerical model is validated to aid in the study of RC column testing against the explosion field test results. Residual capacity of RC column is selected as damage criteria. Intensive investigations using Arbitrary Lagrangian Eulerian (ALE) methodology are then implemented to evaluate the influence of scaled distance, column dimension, concrete and steel reinforcement properties and axial load index on the vulnerability of RC columns. The generated empirical formulae can be used by the designers to predict a damage degree of new column design when consider explosive loads. With an extensive knowledge on the vulnerability assessment of RC structures under blast explosion, advancement to the convention design of structural elements can be achieved to improve the column survivability, while reducing the lethality of explosive attack and in turn providing a safer environment for the public.

Punching Shear Strength of Slab-Column Interior Connection Considering Anchorage Performance of Shear Reinforcements (전단보강재의 정착성능을 고려한 슬래브-기둥 내부접합부의 뚫림전단강도)

  • Jung, Hyung-Suk;Choi, Hyun-Ki;Chung, Joo-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Flat plate slab is cost-efficient structural system widely used in high rise building, apartment and parking garages. But flat plate-column connections are so weak against punching shear failure that it may cause collapse of overall structure. In this study, spiral type shear reinforcement which increases the shear strength and ductility of the plate-column connection and has good workability was proposed. And experimental test was performed to verify the punching shear capacity of spiral type shear reinforcement. The current code does not accurately estimate the punching shear strength of slab-column connection with shear reinforcement because slab is so slender that punching failure may occurred before shear reinforcement reached yield stress. Therefore modified equation of ACI code for punching shear strength was proposed base on finite element analysis using LUSAS program, and data analysis from CEB-FIP database.

Validation of the seismic response of an RC frame building with masonry infill walls - The case of the 2017 Mexico earthquake

  • Albornoz, Tania C.;Massone, Leonardo M.;Carrillo, Julian;Hernandez, Francisco;Alberto, Yolanda
    • Advances in Computational Design
    • /
    • v.7 no.3
    • /
    • pp.229-251
    • /
    • 2022
  • In 2017, an intraplate earthquake of Mw 7.1 occurred 120 km from Mexico City (CDMX). Most collapsed structural buildings stroked by the earthquake were flat slab systems joined to reinforced concrete (RC) columns, unreinforced masonry, confined masonry, and dual systems. This article presents the simulated response of an actual six-story RC frame building with masonry infill walls that did not collapse during the 2017 earthquake. It has a structural system similar to that of many of the collapsed buildings and is located in a high seismic amplification zone. Five 3D numerical models were used in the study to model the seismic response of the building. The building dynamic properties were identified using an ambient vibration test (AVT), enabling validation of the building's finite element models. Several assumptions were made to calibrate the numerical model to the properties identified from the AVT, such as the presence of adjacent buildings, variations in masonry properties, soil-foundation-structure interaction, and the contribution of non-structural elements. The results showed that the infill masonry wall would act as a compression strut and crack along the transverse direction because the shear stresses in the original model (0.85 MPa) exceeded the shear strength (0.38 MPa). In compression, the strut presents lower stresses (3.42 MPa) well below its capacity (6.8 MPa). Although the non-structural elements were not considered to be part of the lateral resistant system, the results showed that these elements could contribute by resisting part of the base shear force, reaching a force of 82 kN.

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

A Big Data Analysis of Public Interest in Defense Reform 2.0 and Suggestions for Policy Completion

  • Kim, Tae Kyoung;Kang, Wonseok
    • Journal of East Asia Management
    • /
    • v.4 no.1
    • /
    • pp.1-22
    • /
    • 2023
  • This study conducted a big data analysis study through text mining and semantic network analysis to explore the perception of defense reform 2.0. The collected data were analyzed with the top 70 keywords as the appropriate range for network visualization. Through word frequency analysis, connection centrality analysis, and an N-gram analysis, we identified issues that received much attention such as troop reduction, shortening of military service period, dismantling of the border area unit, and returning wartime operational control. In particular, the results of clustering words through CONCOR analysis showed that there was a great interest in pursuing the technical group, concerns about military capacity reduction, and reorganization of manpower structure. The results of the analysis through text mining techniques are as follows. First, it was found that there was a lack of awareness about measures to reinforce the reduced troops while receiving much attention to the reduction of troops in Defense Reform 2.0. Second, it was found that it is necessary to actively communicate with the local community due to the deconstruction and movement of the border area units, such as the decrease of the population of the region and the collapse of the local commercial area. Third, it was judged that it is necessary to show substantial results through the promotion of barracks culture and the defense industry, which showed that there was less interest than military structure and defense operation from the people and the introduction of active policies. Through this study, we analyzed the public's interest in defense reform 2.0, which is a representative defense policy, and suggested a plan to draw support for national policy.

Diverse modeling techniques, parameters, and assumptions for nonlinear dynamic analysis of typical concrete bridges with different pier-to-deck connections: which to use and why

  • Morkos, B.N.;Farag, M.M.N.;Salem, S.;Mehanny, S.S.F.;Bakhoum, M.M.
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.245-261
    • /
    • 2022
  • Key questions to researchers interested in nonlinear analysis of skeletal structures are whether the distributed plasticity approach - albeit computationally demanding - is more reliable than the concentrated plasticity to adequately capture the extent and severity of the inelastic response, and whether force-based formulation is more efficient than displacement-based formulation without compromising accuracy. The present research focusing on performance-based seismic response of mid-span concrete bridges provides a pilot holistic investigation opting for some hands-on answers. OpenSees software is considered adopting different modeling techniques, viz. distributed plasticity (through either displacement-based or force-based elements) and concentrated plasticity via beam-with-hinges elements. The pros and cons of each are discussed based on nonlinear pushover analysis results, and fragility curves generated for various performance levels relying on incremental dynamic analyses under real earthquake records. Among prime conclusions, distributed plasticity modeling albeit inherently not relying on prior knowledge of plastic hinge length still somewhat depends on such information to ensure accurate results. For instance, displacement-based and force-based approaches secure optimal accuracy when dividing, for the former, the member into sub-elements, and satisfying, for the latter, a distance between any two consecutive integration points, close to the expected plastic hinge length. On the other hand, using beam-with-hinges elements is computationally more efficient relative to the distributed plasticity, yet with acceptable accuracy provided the user has prior reasonable estimate of the anticipated plastic hinge length. Furthermore, when intrusive performance levels (viz. life safety or collapse) are of concern, concentrated plasticity via beam-with-hinges ensures conservative predicted capacity of investigated bridge systems.