• 제목/요약/키워드: collapse capacity

검색결과 354건 처리시간 0.027초

Long-term behavior of segmentally-erected prestressed concrete box-girder bridges

  • Hedjazi, S.;Rahai, A.;Sennah, K.
    • Structural Engineering and Mechanics
    • /
    • 제20권6호
    • /
    • pp.673-693
    • /
    • 2005
  • A general step-by-step simulation for the time-dependent analysis of segmentally-erected prestressed concrete box-girder bridges is presented. A three dimensional finite-element model for the balanced-cantilever construction of segmental bridges, including effects of the load history, material nonlinearity, creep, shrinkage, and aging of concrete and the relaxation of prestressing steel was developed using ABAQUS software. The models included three-dimensional shell elements to model the box-girder walls and Rebar elements representing the prestressing tendons. The step-by-step procedure allows simulating the construction stages, effects of time-dependent deformations of materials and changes in the structural system of the bridges. The structural responses during construction and throughout the service life were traced. A comparison of the developed computer simulation with available experimental results was conducted and good agreement was found. Deflection of the bridge deck, changes in stresses and strains and the redistribution of internal forces were calculated for different examples of bridges, built by the balanced-cantilever method, over thirty-year duration. Significant time-dependent effects on the bridge deflections and redistribution of internal forces and stresses were observed. The ultimate load carrying capacities of the bridges and the behavior before collapse were also determined. It was observed that the ultimate load carrying capacity of such bridges decreases with time as a result of time-dependent effects.

생산 가능한 토지면적산정기법을 이용한 지속성 평가에 대한 연구: 제주도 지역을 중심으로 (The Assessment of the Sustain ability on Human Activities through Ecologically Productive Land Calculated by the Ecological Footprint of Cheju Island)

  • 김용범;현연주;정용
    • 환경영향평가
    • /
    • 제6권2호
    • /
    • pp.103-112
    • /
    • 1997
  • The object of this study is the introduction and the application of Ecological Footprint(EF) for sustainability of regional people activities. It is a tool for the evaluation of specific projects through various lifestyles or consumption to area of broad policy and budgets. But in Korea there is no assessment for consumption level of human activities by EF. Therefore this study try to analyse ecologically productive land for human activities of Cheju-island in order to assess the sustainability in Cheju and compares with another industrized countries. We analyze the human activities level of Cheju-island then the EF is about 0.9(ha/cap). This value is not more than another countries like Canada and United States. EF assists in choosing technologies, policies and Life Cycle Assessment(LCA) which can perform a certain task with the smallest ecological footprint. It will help society to avoid collapse and move towards sustainability and ecological efficiency.

  • PDF

Seismic responses of composite bridge piers with CFT columns embedded inside

  • Qiu, Wenliang;Jiang, Meng;Pan, Shengshan;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • 제15권3호
    • /
    • pp.343-355
    • /
    • 2013
  • Shear failure and core concrete crushing at plastic hinge region are the two main failure modes of bridge piers, which can make repair impossible and cause the collapse of bridge. To avoid the two types of failure of pier, a composite pier was proposed, which was formed by embedding high strength concrete filled steel tubular (CFT) column in reinforced concrete (RC) pier. Through cyclic loading tests, the seismic performances of the composite pier were studied. The experimental results show that the CFT column embedded in composite pier can increase the flexural strength, displacement ductility and energy dissipation capacity, and decrease the residual displacement after undergoing large deformation. The analytical analysis is performed to simulate the hysteretic behavior of the composite pier subjected to cyclic loading, and the numerical results agree well with the experimental results. Using the analytical model and time-history analysis method, seismic responses of a continuous girder bridge using composite piers is investigated, and the results show that the bridge using composite piers can resist much stronger earthquake than the bridge using RC piers.

QR 태그 기반 전장 스마트 지도에서의 자료 추상화 (Data Abstraction in Battlefield Smart Maps Based on QR Tags)

  • 곽노섭;윤영선;정진만;소선섭;은성배
    • 한국멀티미디어학회논문지
    • /
    • 제23권3호
    • /
    • pp.440-446
    • /
    • 2020
  • The application field of smart terminals is increasing and its application is also spreading in the defense field. The use of smart terminal based map application is very important in battle fields. The problem is that the communication infrastructure is easy to collapse and the use of GPS is usually disturbed. In this paper, we studied the maps stored in the QR tag at the battle field. The problem is to abstract the map information so that it can be stored in the small QR tag. We have abstracted path information on a vector basis and require only a small amount of data compared to imaged path information. We analyzed the amount of data generated by the abstraction and mathematically analyzed the boundary where the amount does not exceed the capacity limit of the QR tag. Our research can be applied not only to battlefields, but also to disaster / disaster scenes, or in environments with difficult Internet communications, such as mountainous areas.

굽힘하중을 받는 보강 사각관 보의 좌굴변형거동 해석 (Bending Analysis of Reinforced Tube Beams)

  • 최낙삼;이성혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.60-65
    • /
    • 2007
  • Local buckling behaviors of aluminum square tube beams reinforced by aluminum plates under three point bending loads have been analyzed using experimental tests combined with theoretical and finite element analyses. For this analysis true stresses were determined from applied loads and cross-sectional area records of a tensile specimen with a rectangular cross-section by real-time photographing. True strains were also obtained from in-situ local elongation measurements of the specimen gage portion by the multi-point scanning laser extensometer. Six kinds of aluminum tube beam specimens reinforced by aluminum plates were employed for the bending test. The bending deformation behaviors up to the maximum load analyzed by the numerical simulation agreed well with experimental ones. After passing the maximum load, reinforcing plate hindering the local buckling of the tube beam was debonded from the aluminum tube beam. An aluminum tube beam strengthened by aluminum plate on the upper web showed the most excellent bending capacity, which could be explained on the basis of the neutral axis shift and the local buckling deformation range.

  • PDF

무한사면에서의 사면붕괴와 보강대책 사례연구 (A Case Study about the Slope Collapse and Reinforcement Method on the Infinite Slope)

  • 유병옥;홍정표;전종헌;이태선;민경남
    • 터널과지하공간
    • /
    • 제16권2호
    • /
    • pp.146-155
    • /
    • 2006
  • 연구지역은 고속도로 신설구간에 형성된 대절토 무한사면으로 불연속면을 따라 사면파괴활동이 시작되었다. 보강은 락앵커 공법을 시공하여 상부구간 안정화를 시도하였다. 그러나 앵커보강 하부구간에 대규모 붕괴가 추가 발생하였고 이후 2차례 더 진행되었다. 붕괴원인을 분석하기 위하여 시료를 채취하고 직접전단시험을 실시하여 잔류전단강도를 확인하였다. 그리고 붕괴지반의 앵커력 확보를 화인하기 위하여 앵커인발시험을 실시하고 앵커설계에 반영하였다. 앵커는 붕괴면의 굴곡이 심하고 연경의 변화가 심한 지반상태를 고려하여 계단식 옹벽과 조합하여 앵커력을 확보하도록 하였다.

송전철탑 부분축소모형의 실험적 연구 (Experimental Study of Steel Transmission Tower using Partially Scaled Model)

  • 김종민;김승준;박종섭;강영종
    • 한국강구조학회 논문집
    • /
    • 제22권4호
    • /
    • pp.335-344
    • /
    • 2010
  • 본 논문에서는 실험적 연구를 통해 송전철탑의 극한 거동을 규명하고 보-트러스 구조해석모델의 적합성을 평가하였다. 해석적 연구를 통해 충분히 검증된 송전철탑의 부분 축소 모형을 실험체로 제작하였으며, 이를 극한파괴가 발생할 때 까지 수평방향으로 가력하였다. 그 결과 기존 연구에서 제안된 구조해석모델을 실험적으로 검증하였으며, 송전철탑의 극한 내력 또한 해석적 연구 결과와 잘 부합하는 것으로 판명되었다. 그리고 각재부 및 각재부 제1윗절간 주주재에서 파괴가 일어난 후 인접 부재로 전이되는 송전철탑 구조물 파괴 모드의 유사성을 확인하였다.

Voltage Stability Prediction on Power System Network via Enhanced Hybrid Particle Swarm Artificial Neural Network

  • Lim, Zi-Jie;Mustafa, Mohd Wazir;Jamian, Jasrul Jamani
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.877-887
    • /
    • 2015
  • Rapid development of cities with constant increasing load and deregulation in electricity market had forced the transmission lines to operate near their threshold capacity and can easily lead to voltage instability and caused system breakdown. To prevent such catastrophe from happening, accurate readings of voltage stability condition is required so that preventive equipment and operators can execute security procedures to restore system condition to normal. This paper introduced Enhanced Hybrid Particle Swarm Optimization algorithm to estimate the voltage stability condition which utilized Fast Voltage Stability Index (FVSI) to indicate how far or close is the power system network to the collapse point when the reactive load in the system increases because reactive load gives the highest impact to the stability of the system as it varies. Particle Swarm Optimization (PSO) had been combined with the ANN to form the Enhanced Hybrid PSO-ANN (EHPSO-ANN) algorithm that worked accurately as a prediction algorithm. The proposed algorithm reduced serious local minima convergence of ANN but also maintaining the fast convergence speed of PSO. The results show that the hybrid algorithm has greater prediction accuracy than those comparing algorithms. High generalization ability was found in the proposed algorithm.

Failure analysis of a transmission tower during a microburst

  • Shehata, A.Y.;El Damatty, A.A.
    • Wind and Structures
    • /
    • 제11권3호
    • /
    • pp.193-208
    • /
    • 2008
  • This paper focuses on assessing the failure of one of the transmission towers that collapsed in Winnipeg, Canada, as a result of a microburst event. The study is conducted using a fluid-structure numerical model that was developed in-house. A major challenge in microburst-related problems is that the forces acting on a structure vary with the microburst parameters including the descending jet velocity, the diameter of the event and the relative location between the structure and the jet. The numerical model, which combines wind field data for microbursts together with a non-linear finite element formulation, is capable of predicting the progressive failure of a tower that initiates after one of its member reaches its capacity. The model is employed first to determine the microburst parameters that are likely to initiate failure of a number of critical members of the tower. Progressive failure analysis of the tower is then conducted by applying the loads associated with those critical configurations. The analysis predicts a collapse of the conductors cross-arm under a microburst reference velocity that is almost equal to the corresponding value for normal wind load that was used in the design of the structure. A similarity between the predicted modes of failure and the post event field observations was shown.

고온에서의 알칼리 활성화 내화성 결합재의 강도 및 공극구조 평가 (Estimation of Strength and Pore Structure of Alkali-Activated Fire Protection Materials at High Temperature)

  • 송훈;김영호;김완기;소형석
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권4호
    • /
    • pp.59-66
    • /
    • 2012
  • This study is interested in identifying the effectiveness of alkali-activated fire protection material compounds including the alkali-activator such as potassium hydroxide, sodium silicate and fly ash as the fire resistant finishing materials. Also, this paper is concerned with change in compressive strength and pore structure of the alkali-activated fire protection material at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of TG-DSC and mercury intrusion porosimetry measurements. This study results show that compressive strength is rapidly degraded depending on a rise of heating temperature. Porosity showed a tendency to increase irrespective of specimen types. This is due to both the outbreak of collapse of gel comprising the cement and a micro crack by heating. However, alkali-activated fire protection material composed of potassium hydroxide, sodium silicate and fly ash has the thermal stability of the slight decrease of compressive strength and porosity at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate.