• Title/Summary/Keyword: collapse capacity

Search Result 354, Processing Time 0.036 seconds

Research on serviceability indicators and evaluation method for the revision of Special Act on Safety and maintenance of facilities (시특법 개정을 위한 서비스 성능 지표 설정 및 평가 방법 연구)

  • Park, Taeil;Park, Wonyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.312-313
    • /
    • 2018
  • As global climate change leaded to extensive natural disaster and radical deterioration of infrastructures, there was increased attentions for the evaluation of infrastructures. After the collapse of Seongsu Bridge in 1994, Korea has enacted the "Special act on safety and maintenance of facilities" and secured the safety of facilities using systematic and periodic safety inspections. However, current facility inspections are mainly performed by the physical defect and structural analysis, and do not properly consider the serviceability of infrastructure such as capacity of facility and user's satisfaction. Thus, the purpose of the study is to develop an evaluation criteria for serviceability of infrastructures and finally leading to the revision of "Special Act on safety and maintenance of facilities in rational manner.

  • PDF

Simplified methods for seismic assessment of existing buildings

  • Tehranizadeh, Mohsen;Amirmojahedi, Maryam;Moshref, Amir
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1405-1428
    • /
    • 2016
  • Besides the complex instructions of guidance documents for seismic rehabilitation of existing buildings, some institutions have provided simple criteria in terms of simplified rehabilitations. ASCE 41-06 is one of documents that introduced a simple method for assessment of certain buildings that do not require advanced analytical procedures. Furthermore the New Zealand guideline has presented a simple lateral mechanism analysis that is a hand static analysis for determining the probable collapse mechanism, lateral strength and displacement capacity of the structure. The present study is focused on verifying the results of the simplified methods which is used by NZSEE and ASCE 41-06 in assessment of existing buildings. For this, three different special steel moment and braced frames are assessed under these two guidelines and the accuracy of the results is checked with the results of nonlinear static and dynamic analysis. After comparison of obtained results, suggestions are presented to improve seismic retrofit criteria.

An Experimental Study on Seismic Retrofitting of RC Beam-Column Connections with Carbon FRP (탄소 FRP를 이용한 철근콘크리트 보-기둥 접합부의 내진 성능 보강 실험)

  • Kim Min;Lee Kihak;Lee Jae-Hong;Woo Sung-Woo;Lee Jung-Wean
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.263-266
    • /
    • 2005
  • Many RC structures built without seismic provisions have exhibited brittle shear failures in the beam-column joint area, and resulted in large permanent deformations and structural collapse. This paper presents the results of an experimental investigation pertaining to the use of carbon fiber-reinforced polymer(FRP) for strengthening of RC beam-column connections. The selective upgrade is obtained by choosing different combinations and locations of carbon FRP sheets to determine the effective way to improve the structural performance of joints. Experimental results demonstrate significant improvement of flexural capacity and ductility of beam-column connections originally built without seismic details.

  • PDF

Pushover Tests of 1:5 Scale 3-Story Reinforced Concrete Frames

  • Lee, Han-Seon;Woo, Sung-Woo;Heo, Yun-Sup;Seon, Jin-Gyu
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.165-174
    • /
    • 1999
  • The objective of the research stated herein is to observe the elastic and inelastic behaviors and ultimate capacity of 1:5 scale 3-story reinforced concrete frame. Pushover tests were performed to 1:5 scale 3-story reinforced concrete frames with and without infilled masonry. To simulate the earthquake effect, the lateral force distribution was maintained by an inverted triang1e by using the whiffle tree. From the test results, the relation ships between the total lateral load and the roof drift, the distribution of column shears, the relation between story shear and story drift, and the angular rotations at the critical portions of structures were obtained. The effects of infilled masonry were investigated with regards to the stiffness, strength, and ductility of structures. Final collapse modes of structures with and without infilled masonry were compared.

  • PDF

Seismic performance evaluation of steel moment frames with self-centering energy-dissipating coupled wall panels

  • Lu Sui;Hanheng Wu;Menglong Tao;Zhichao Jia;Tianhua Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.663-677
    • /
    • 2023
  • The self-centering energy-dissipating coupled wall panels (SECWs) possess a dual capacity of resiliency and energy dissipation. Used in steel frames, the SECWs can localize the damage of structures and reduce residual drifts. Based on OpenSEES, the nonlinear models were established and validated by experimental results. The seismic design procedure of steel frame with SECW structures (SF-SECW) was proposed in accordance with four-level seismic fortification objectives. Nonlinear time-history response analyses were carried out to validate the reasonability of seismic design procedure for 6-story and 12-story structures. Results show that the inter-story drifts of designed structures are less than drift limits. According to incremental dynamic analyses (IDA), the fragility curves of mentioned-above structure models under different limit states were obtained. The results indicate that designed structures have good seismic performance and meet the seismic fortification objectives.

An Experimental Study on Bonding Capacity by Concrete Strength and Type of Re-bar Anchor (콘크리트 강도별 매입 철근의 유형별 부착력 측정실험)

  • Cho, Seong-Yeol;Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • Many construction equipment or supporting structure should be installed in a field without appropriate anchorage to cause a collapse of those. Anchor length, anchor diameter, hooked or non hooked will be made and tested in the study. This one will be analyzed and compared with the previous study in order to find out some difference, strength by strength, based on this study. Embedded re-bar and the resistant capacity against pulled out force of re bar have been tested and analyzed by concrete design strength and rebar diameter in the study. 21Mpa and 24MPa compressive strength which are used in construction practice have been applied as variables. Those rebars are composed of D13, D16. D22 which are mostly used at construction sites. The followings are summarized as conclusions.1) ductility is not increased as rebar diameter becomes larger under the condition of non-hooked anchorage.2) those are two times of displacement difference between small diameter of rebar and large one with hooked anchorage of rebar while being 1/10 times difference with non-hooked condition but, only 10% difference of maximum load are shown, not conspicuously between hooked and non-hooked condition.3) displacement related to ductility can be three(3) times decreased if only concrete compressive strength and rebar diameter become larger with heavy support weight.

Seismic interactions between suspended ceilings and nonstructural partition walls

  • Huang, Wen-Chun;McClure, Ghyslaine;Hussainzada, Nahidah
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.329-348
    • /
    • 2013
  • This study aims at observing the coupling behaviours between suspended ceilings and partition walls in terms of their global seismic performance using full-scale shake table tests. The suspended ceilings with planar dimensions of $6.0m{\times}3.6m$ were tested with two types of panels: acoustic lay-in and metal clip-on panels. They were further categorized as seismic-braced, seismic-unbraced, and non-seismic installations. Also, two configurations of 2.7 m high partition wall specimens, with C-shape and I-shape in the plane layouts, were tested. In total, seven ceiling-partition-coupling (CPC) specimens were tested utilizing a unidirectional seismic simulator. The test results indicate that the damage patterns of the tested CPC systems included failure of the ceiling grids, shearing-off of the wall top railing, and, most destructively, numerous partial detachments and falling of the ceiling panels. The loss of panels was mostly concentrated near the center of the tested partition wall. The testing results also confirmed that the failure mode of the non-seismic CPC systems was brittle: The whole system would collapse suddenly all at once when the magnitude of the inputs hit the capacity threshold, rather than displaying progressive damage. Overall, the seismic capacity of the unbraced and braced CPC systems could be up to 1.23 g and 2.67 g, respectively; these accelerations were both achieved at the base of the partition wall. Nonetheless, for practical applications, it is noteworthy that the three-dimensional nature of seismic excitations and the size effect of the ceiling area are parameters that exacerbate the CPC's seismic response so that their actual capacity may be dramatically decreased, leading to important losses even in moderate seismic events.

Evaluation of seismic performance of mid-rise reinforced concrete frames subjected to far-field and near-field ground motions

  • Ansari, Mokhtar;Ansari, Masoud;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.453-462
    • /
    • 2018
  • Damages to buildings affected by a near-fault strong ground motion are largely attributed to the vertical component of the earthquake resulting in column failures, which could lead to disproportionate building catastrophic collapse in a progressive fashion. Recently, considerable interests are awakening to study effects of earthquake vertical components on structural responses. In this study, detailed modeling and time-history analyses of a 12-story code-conforming reinforced concrete moment frame building carrying the gravity loads, and exposed to once only the horizontal component of, and second time simultaneously the horizontal and vertical components of an ensemble of far-field and near-field earthquakes are conducted. Structural responses inclusive of tension, compression and its fluctuations in columns, the ratio of shear demand to capacity in columns and peak mid-span moment demand in beams are compared with and without the presence of the vertical component of earthquake records. The influences of the existence of earthquake vertical component in both exterior and interior spans are separately studied. Thereafter, the correlation between the increase of demands induced by the vertical component of the earthquake and the ratio of a set of earthquake record characteristic parameters is investigated. It is shown that uplift initiation and the magnitude of tensile forces developed in corner columns are relatively more critical. Presence of vertical component of earthquake leads to a drop in minimum compressive force and initiation of tension in columns. The magnitude of this reduction in the most critical case is recorded on average 84% under near-fault ground motions. Besides, the presence of earthquake vertical components increases the shear capacity required in columns, which is at most 31%. In the best case, a direct correlation of 95% between the increase of the maximum compressive force and the ratio of vertical to horizontal 'effective peak acceleration (EPA)' is observed.

Reliability of analytical models for the prediction of out-of-plane capacity of masonry infills

  • Pasca, Monica;Liberatore, Laura;Masiani, Renato
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.765-781
    • /
    • 2017
  • The out-of-plane response of infill walls has recently gained a growing attention and has been recognised fundamental in the damage assessment of reinforced concrete and steel framed buildings subjected to seismic loads. The observation of damage after earthquakes highlighted that out-of-plane collapse of masonry infills may occur even during seismic events of low or moderate intensity, causing both casualty risks and unfavourable situations affecting the overall structural response. Even though studies concerning the out-of-plane behaviour of infills are not as many as those focused on the in-plane response, in the last decades, a substantial number of researches have been carried out on the out-of-plane behaviour of infills. In this study, the out-of-plane response is investigated considering different aspects. First, damages observed after past earthquakes are examined, with the aim of identifying the main parameters involved and the most critical configurations. Secondly, the response recorded in about 150 experimental tests is deeply examined, focusing on the influence of geometrical characteristics, boundary conditions, prior in-plane damage, presence of reinforcing elements and openings. Finally, different theoretical capacity models and code provisions are discussed and compared, giving specific attention to those based on the arching theory. The reliability of some of these models is herein tested with reference to experimental results. The comparison between analytically predicted and experimental values allows to appreciate the extent of approximation of such methods.

Ductility and ductility reduction factor for MDOF systems

  • Reyes-Salazar, Alfredo
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.369-385
    • /
    • 2002
  • Ductility capacity is comprehensively studied for steel moment-resisting frames. Local, story and global ductility are being considered. An appropriate measure of global ductility is suggested. A time domain nonlinear seismic response algorithm is used to evaluate several definitions of ductility. It is observed that for one-story structures, resembling a single degree of freedom (SDOF) system, all definitions of global ductility seem to give reasonable values. However, for complex structures it may give unreasonable values. It indicates that using SDOF systems to estimate the ductility capacity may be a very crude approximation. For multi degree of freedom (MDOF) systems some definitions may not be appropriate, even though they are used in the profession. Results also indicate that the structural global ductility of 4, commonly used for moment-resisting steel frames, cannot be justified based on this study. The ductility of MDOF structural systems and the corresponding equivalent SDOF systems is studied. The global ductility values are very different for the two representations. The ductility reduction factor $F_{\mu}$ is also estimated. For a given frame, the values of the $F_{\mu}$ parameter significantly vary from one earthquake to another, even though the maximum deformation in terms of the interstory displacement is roughly the same for all earthquakes. This is because the $F_{\mu}$ values depend on the amount of dissipated energy, which in turn depends on the plastic mechanism, formed in the frames as well as on the loading, unloading and reloading process at plastic hinges. Based on the results of this study, the Newmark and Hall procedure to relate the ductility reduction factor and the ductility parameter cannot be justified. The reason for this is that SDOF systems were used to model real frames in these studies. Higher mode effects were neglected and energy dissipation was not explicitly considered. In addition, it is not possible to observe the formation of a collapse mechanism in the equivalent SDOF systems. Therefore, the ductility parameter and the force reduction factor should be estimated by using the MDOF representation.