• Title/Summary/Keyword: collagen fiber

Search Result 178, Processing Time 0.031 seconds

POSSIBILITY OF NONDESTRUCTIVE ANALYSIS OF CHOLESTEROL AND COLLAGEN IN ATHEROSCLEROTIC PLAQUES USING NIRS

  • Neumeister, Volker;Lattke, Peter;Schuh, Dieter;Knuschke, Peter;Reber, Friedemann;Steiner, Gerald;Jaross, Werner
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4103-4103
    • /
    • 2001
  • The aim of this study was to examine whether near infrared spectroscopy (NIRS) is an acceptable tool to determine cholesterol and collagen in human atherosclerotic plaque without destruction of the analyzed areas and without danger the endothelial cells - three preconditions for the development of a NIR-heart-catheter. The questions were: Can the cholesterol and collagen content of the arterial intima be estimated with acceptable precision in vitro by NIRS despite the matrix inhomogeneity of the plaques and their anatomic variability\ulcorner How deep can such NIR radiation penetrate into arterial tissue without danger for endothelial cells\ulcorner Is this penetration sufficient for information on the lipid and collagen accumulation\ulcorner Using NIRS, cholesterol and collagen can be determined with acceptable precision in model mixtures and human aortic specimens (r=0,896 to 0,957). The chemical reference method was HPLC. The energy dose was 71 mW/$cm^{-2}$ using a fiber optic strand with a length of 1.5m and an optical window of d=4mm. This dose appears to be not dangerous for endothelial cells, It will be attenuated to 50% by a arterial tissue of about 170-$200\mu\textrm{m}$ thickness. The results are also acceptable using a thin coronary catheter-like fiber optic strand (d=1mm).

  • PDF

Antifibrotic effects of oriental herbs GLM001 on liver cirrhosis induced by bile duct ligation

  • Jeong, Bong-Ho;Kim, Hee-Seok;Kim, Chul;Kim, Jae-Sung;Bae, Heung-Mo;Kwon, In-Sook;Lee, Cheol-Han;JeKal, Seung-Ju;Yu, Byung-Su
    • Advances in Traditional Medicine
    • /
    • v.2 no.2
    • /
    • pp.94-100
    • /
    • 2002
  • Liver cirrhosis is characterized by hyperaccumulation of fibrous tissue components and is commonly observed in latter or terminal states of chronic hepatic diseases. In this study, the antifibrotic effects of GLM001 on liver cirrhosis were examined in bile duct ligated rats and patients with hepatic diseases. GLM001 (250 mg/kg rat weight/ day) was administrated to cirrhotic rats for 4 weeks and to humans for 14 weeks. Bile duct ligated rats significantly increased liver collagen content and biochemical markers of hepatic injury. Liver histology showed collagen fiber deposition was increased and the normal architecture was lost with large zones of necrosis being observed frequently. GLM001 administrated rats showed significantly decreased liver collagen content, and accumulation of collagen fiber in histological analysis. Patients, who were treated with GLM001, showed decreases in biochemical markers of hepatic diseases. These results demonstrate the usefulness of GLM001 as an antifibrotic agent for liver cirrhosis.

Comparison of Chemical Composition, Quality, and Muscle Fiber Characteristics between Cull Sows and Commercial Pigs: The Relationship between Pork Quality Based on Muscle Fiber Characteristics

  • Jeong-Uk Eom;Jin-Kyu Seo;Kang-Jin Jeong;Sumin Song;Gap-Don Kim;Han-Sul Yang
    • Food Science of Animal Resources
    • /
    • v.44 no.1
    • /
    • pp.87-102
    • /
    • 2024
  • This study aims to compare the chemical composition, quality, and muscle fiber characteristics of cull sows and commercial pigs, investigating the effect of changes in muscle fiber characteristics on pork quality. The proximate composition, color, pH, water-holding capacity (drip loss and cooking loss), protein solubility, total collagen content, and muscle fiber characteristics of cull sows (n=20) and commercial pigs (n=20) pork were compared. No significant differences were found between cull sows and commercial pigs in terms of proximate composition, drip loss, protein solubility, or total collagen content of their meat (p<0.05). However, cull sow pork exhibited a red color and a higher pH (p<0.05). This appears to be the result of changes in muscle fiber number and area composition (p<0.05). Cull sow meat also displayed better water-holding capacity as evident in a smaller cooking loss (p<0.05), which may be related to an increase in muscle fiber cross-sectional area (p<0.05). In conclusion, muscle fiber composition influences the pork quality; cull sow pork retains more moisture when cooked, resulting in minimal physical loss during processing and can offer more processing suitability.

Review on the Correlation between Bone Mass, Skinfold Thickness and the Volume of Urine collagen Peptide in Postmenopausal Women (폐경 후 여성의 골량과 피부두겹두께 및 뇨 콜라겐펩타이드 양의 관련성에 대한 고찰)

  • Park, Mi-Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.3 no.2
    • /
    • pp.91-103
    • /
    • 2001
  • The bone is composed of the bone matrix of collagen and hydroxyapatite, the mixture of calcium and phosphours. The bone tissue is considered to the special connective tissue that possesses extracellular matrix made by collagen fiber deposited with mineral complex. In order to maintain bone mass measured by the sum of bone matrix and hydroxyapatite, bone resorption by osteoclast during lifetime and bone remodeling to form bone by osteoblast in its resorption region repeat continuously. The osteoblast has a mesodermic fetal origin like fibroblast for the formation of form tissues. Two cells express identical genes and synthesize the identical collagen type I as the major component of the formation of bone matrix and skin. Therefore, it is considered that the decrease of skinfold thickness and the decrease of bone mass related to the age, the change of two tissues composed of collagen type I is caused by the same genetic mechanism. The decrease of bone mass is caused by the change of the amount and structure of bone matrix by several factors and the amount of minerals deposited on bone matrix. Especially, in case of female, the deficiency of estrogen by menopause makes these changes rapidly increased. The decrease of bone mass and skinfold thickness is due to the decrease of the amount of collagen and its structural change the common component of bone tissue and skin tissue. Therefore, the relationship of the amount of cross-linked peptide N-telopeptide, collagen metabolite which excretes as urine. Based upon the proved results about the significant relationship of bone mass, the amount of bone collagen, the amount of skin collagen and skinfold thickness, the bone mass may be expected through a facile determination of skinfold thickness.

  • PDF

Preparation and Characterization of Collagen and Collagen/Silk Fibroin Blend Nanofibers (콜라겐 및 실크 피브로인/콜라겐 블렌드 나노섬유의 제조 및 특성분석)

  • Jeong, Lim;Park, Won-Ho;Min, Byung-Moo
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.31-33
    • /
    • 2003
  • 실크 피브로인은 대표적인 섬유상 단백질의 하나로 생체적합성, 생분해성, 저독성 등의 유용한 특성을 가지므로 생체재료로 상당한 관심과 연구의 대상이 되어 왔다. 콜라겐 또한 우수한 생체적합성과 생분해성을 가지고 있어 유용한 생채재료로서 조직배양용 지지체나 창상피복재와 같은 의료용 분야에 적절하게 응용될 수 있는 장점을 가진다. 본 실험에서는 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP)을 공용매로 하여 실크 피브로인/HFIP 용액과 콜라겐/HFIP 용액을 각각 제조하여, 이들 용액을 75/25, 50/50, 25/75의 비율로 혼합하여 방사용액을 제조하고, 이 용액을 전기방사법으로 방사하여 실크 피브로인/콜라겐 블렌드 나노섬유를 얻었다. (중략)

  • PDF

Phage Litmus: Biomimetic Virus-Based Colorimetric Sensors for Explosive Detection

  • O, Jin-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.90.1-90.1
    • /
    • 2013
  • Nature utilizes various of the colorization process. Some species of birds can express their mood of tempers by changing their collagen structures on skin. For example, turkey can change their skin color by expansion of the collagen structures, which are associated with the distinct color changes. Here, we developed bioinspired virus-based colorimetric sensors which can be genetically tuned for target molecule. Using M 13 bacteriophage, we fabricated responsive self-assembled color matrices composed of quasi-ordered fiber bundle structures. These virus matrices can exhibit color change by stimuli through fiber bundle structure modulation. Upon exposure of volatile organic compounds, the resulting multi-colored matrices exhibited distinct color changes with different ratios that can be recognized by the naked eyes. Using the directed evolutionary approaches, we genetically engineered the virus matrix to incorporate binding motif for explosive detection (i.e., trinitrotoluene (TNT)). Through utilizing a common handheld device (i.e., iPhone), we could distinguish TNT molecules down to 20 ppb in a selective manner. Our novel biomimetic virus colorimetric sensor can overcome current limitation for low response selectivity.

  • PDF

Three-Dimensional Porous Collagen/Chitosan Complex Sponge for Tissue Engineering

  • Kim, Sung Eun;Cho, Yong Woo;Kang, Eun Jung;Kwon, Ick Chan;Lee, Eunhee Bae;Kim, Jung Hyun;Chung, Hesson;Jeong, Seo Young
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.64-70
    • /
    • 2001
  • A three-dimensional, porous collagen/chitosan complex sponge was prepared to closely simulate basic extracellular matrix (ECM) constitutes, collagen and glycosaminoglycan. The complex sponge was prepared by a lyophilization method and had the regular network with highly porous structure, suitable for cell adhesion and growth. The pores were well interconnected, and their distribution was fairly homogeneous. The complex sponge was crosslinked using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to increase its boilogical stability and enhance its mechanical properties. The crosslinking medium has a great effect on the inner structure of the sponge. The homogeneous, porous structure of the sponge was remarkably collapsed in an aqueous crosslinking medium. However, the morphology of the sponge remained almost intact in a water/ethanol mixture crosslinking milieu. Mechanical properties of the collagen/chitosan sponge were significantly enhanced by EDC-mediated crosslinking. The potential of the sponge as a scaffold for tissue engineering was investigated using a Chinese hamster ovary cell (CHO-K1) line.

  • PDF

Microscopic Imaging of Articular Cartilage using Polarization-Sensitive Optical Coherence Tomography

  • Lee Sang-Won;Oh Jung-Taek;Kim Beop-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.1
    • /
    • pp.37-42
    • /
    • 2005
  • We construct and test the polarization-sensitive optical coherence tomography (PS-OCT) system for imaging porcine and human articular cartilages. PS-OCT is a new imaging technology that provides information regarding not only the tissue structures but tissue components that show birefringence such as collagen. In this study, we measure the cartilage thickness of the porcine joint and the phase retardation due to collagen birefringence. Also, we demonstrate that changes of the collagen fiber orientation could be detected by the PS-OCT system. Finally, differences between normal and damaged human articular cartilage are observed using the PS-OCT system, which is then compared with the regular histology pictures. As a result, the PS-OCT system is proven to be effective for diagnosis of the pathology related to the cartilage. In the future, this technology may be used for discrimination of the collagen types. When combined with endoscope technologies, the PS-OCT images may become a useful tool for in vivo tissue testing.

THE EFFECTS OF HYPERBARIC OXYGEN THERAPY ON PERIODONTAL WOUND HEALING OF REPLANTED RAT TOOTH (고압산소요법이 재식치아 치주조직치유에 미치는 영향)

  • Chung, Ill-Young;Kim, Kwang-Chul;Lee, Keung-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.41-57
    • /
    • 1997
  • The present study investigated the effects of hyperbaric oxygen therapy on periodontal wound healing of replanted rat tooth. 80 rats (Sprague-Dawley strain) weighting $130{\pm}5gm$ were selected and divided into experimental and control group, each group consisting of 40 rats. Rats were administered 0.4% ${\beta}$-aminoproprionitrile for 5 days to achieve gentle tooth extraction. The maxillary first molars were extracted under anesthesia with pentobarbital, washed in sterile distilled water, treated with bacterial collagenase to remove collagen fibers on the root surfaces. After washing in water overnight, the mesial root surface were demineralized by application of citric acid, washed, dried and stored at $4^{\circ}C$. Immediately after tooth extraction and bleeding control, the treated molars extracted previously from other rats were replanted. The experimental group was exposed to hyperbaric oxygen at 2.5 atm. for 2 hrs. a day during experimental period. Eight animals of each group were sacrificed 1, 3, 6, 8, 10 days after reimplantation of teeth by intracardiac perfusion with 4% paraformaldehyde. The replanted molars and surrounding tissues were cut, demineralized, dehydrated and embedded in paraffin. Sections were stained with azan, toluidine blue and hematoxylin. Some other sections were stained by means of immunostaining achieved by the avidinbiotin complex method. The results as follows; 1. Experimental group showed fast healing of gingival epithelium. 2. Macrophage and newly formed blood vessels appeared early in the gingival connective tissue of experimental group. 3. Experimental group showed fast, abundant fibroblast proliferation and regularity of collagen fiber. 4. In both group, collagen was distributed along the collagen fiber. The distribution was strong and regular in the experimental group. 5. In the regenerated periodontal ligament of experimental group, fibers showed regular arrangement and invaded root surface fast.

  • PDF

Preparation of PHBV/Collagen Nanofibrous Mats and their Tissue Compatibility Compatibilscaffolds for tissue engineering

  • Meng, Wan;Kim, Se-Yong;Yuan, Jiang;Kim, Jung-Chul;Kwon, Oh-Hyeong;Ito, Yoshihiro;Kang, Inn-Kyu
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.50-51
    • /
    • 2006
  • The nanofibrous scaffolds were obtained by co-electrospinning PHBV and collagen Type I in HIFP. The resulting fiber diameters were in the range between 300 and 600 nm. The nanofiber surfaces were characterized by ATR-FTIR, ESCA and AFM. The PHBV and collagen components of the PHBV-Col nanofibrous scaffold were biodegraded by PHB depolymerase and a collagenase Type I aqueous solution, respectively. It was found, from the cell-culture experiment, that the PHBV-Col nanofibrous scaffold accelerated the adhesion of the NIH 3T3 cell compared to the PHBV nanofibrous scaffold, thus showing a good tissue engineering scaffold.

  • PDF