• Title/Summary/Keyword: collagen assay

Search Result 305, Processing Time 0.021 seconds

EFFECTS OF bFGF AND PDGF-BB ON OSTEOBLAST DIFFERENTIATION OF BONE MARROW-DERIVED MESENCHYMAL STEM CELL IN RAT (bFGF, PDGF-BB가 백서 골수기원 간엽 줄기세포의 조직골세포 분화에 미치는 영향에 관한 연구)

  • Song, Gin-Ah;Choi, Jin-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.6
    • /
    • pp.495-505
    • /
    • 2006
  • In this study we evaluate the effects of bFGF-BB and PDGF on in vitro proliferation, differentiation and mineralization of mesenchymal stem cells (MSCs) from rat. MSCs were prepared from the bone marrow of 6 or 7-week-old male rats with a technique previously described by Maniatopoulos et al. in 1988. Lineage differentiation to osteogenesis, chondrogenesis and adipogenesis were performed. At first, we characterized the cultured cell on passage 1, 3, 5, 7 with immunocytochemical staining using CD29, 44, 34, 45, ${\alpha}$-SMA and type I collagen. And to study the effects of bFGF and PDGF-BB on proliferation, differentiation and mineralization, we seeded the expanded cell at a density of 6 $6{\times}10^3\;cells/cm^2$ to 100-mm dish for evaluation of cell proliferation and MTT assay was carried out on day 2, 4, 7, 9. We also resuspended the cells with same density $(6{\times}10^3\;cells/cm^2)$ to 24 well plates for subculture. On the following day, the attached cells were exposed to 2.5ng/ml bFGF and/or 25ng/ml PDGF-BB daily during 5 days. The osteocalcin (OC) level was assessed and mineral contents were evaluated with alizarin red S staining on subculture day 2, 7, 14, 21. We identified the mesenchymal stem cell from the bone marrow derived cells of rat through their successful multi-differentiation and stable display of its phenotype. And bFGF and PDGF-BB showed the effect that inhibited osteoblastic differentiation and mineralization mildly in above concentration at in vitro culture. This study was supported by grant 04-2004-0120 from the Seoul National University Hospital Research Fund.

Effect of Oncostatin M on Proliferation and Matrix Synthesis of Dermal Fibroblasts (Oncostatin M이 피부섬유모세포의 증식과 기질생성에 미치는 영향)

  • Chun, Kyung Wook;Lim, Hyung Woo;Han, Seung-Kyu;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.35 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • Purpose: Oncostatin M(OSM) is a multifunctional cytokine that belongs to the interleukin(IL)-6 family. Although there have been a number of studies that focused on the role and mechanism of OSM in various organs and tissues, there are few reports on its effect on wound healing. The final purpose of this project is to evaluate the effect of OSM on wound healing. This pilot study was designed to investigate the effect of OSM on proliferation and matrix synthesis of human dermal fibroblasts, which are the major components of the wound healing. Methods: Excess skin that was obtained from patients who underwent skin grafts, was used for this study. From this material, fibroblasts were isolated and cultured. The cultured fibroblasts were treated with one of four concentrations of OSM. The OSM concentrations used were 0, 50, 100, and 200 ng/ml, respectively. After the OSM treatment, cell proliferation was determined by the MTT assay, collagen synthesis by the C1CP method, GAG levels by the Blyscan Dye method. The parameter levels of each group were compared. Results: OSM treatment increased all the components tested in the study. In particular, cell proliferation, GAG synthesis demonstrated statistically significant increases(p<0.05 in the Mann-Whitney U-test). The highest increase in all the components was obtained at a 100 ng/ml concentration of OSM.Conclusion: The results of the present study indicate that OSM stimulates proliferation and matrix synthesis of human dermal fibroblast and the optimal concentration for wound healing is 100 ng/mL.

In vitro anti-skin-aging effects of dried pomegranate concentrated powder

  • Lee, Dae-Geon;Choi, Beom-Rak;Ku, Sae-Kwang;Kang, Su-Jin;Park, Hye-Rim;Sung, Mi-Sun;Lee, Young-Joon;Park, Ki-Moon
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.109-123
    • /
    • 2018
  • Purpose : In this study, we intended to observe the anti-wrinkle and moisturizing effects of dried pomegranate juice concentration powder (PCP) using in vitro test. Materials and methods : Antioxidant effects of PCP were determined by free radical scavenging capacity (DPPH assay) and the cytotoxicity of PCP was examined in human keratinocyte (HaCaT) and human primary dermal fibroblast-neonatal (HDF) cells. To investigate the moisturizing effect of PCP, hyaluronan synthesis was examined in HaCaT cells. Activity of procollagen production were assessed in HDF cells and elastase inhibition properties of PCP were evaluated in cell free condition, to determine their anti-wrinkle effects. Metalloproteinase 1 (MMP-1) activity was also assessed following UVB irradiation, in the current in vitro experiment. Results : No PCP treatment related significant cytotoxic effects were demonstrated against to the both HDF and HaCaT cells. PCP showed favorable free radical scavenging activities in dose-dependent manner. In PCP-treated HaCaT cells, hyaluronan synthesis was non-significantly but markedly increased, and pro-collagen productions were significantly increased in HDF cells, at all three different concentrations (0.25, 0.75 and 1 mg/ml), and elastase inhibitory activities were observed by PCP treatment. A significant decrease in UVB-induced MMP-1 activity was also observed in 1 mg/ml PCP-treated HDF cells as compared to those of UVB-exposed cells. Conclusions : Taken together, these results suggest that PCP has favorable antioxidant, anti-wrinkle and moisturizing effects without meaningful cytotoxicity on HDF and HaCaT cell lines.

The effect of L-carnitine in the expression of matrix metalloproteinases by human dermal fibroblasts

  • Yoon, Eun-Jeong;Lee, Kyoung-Eun;Sim, Kwan-Sup;Lee, Bum-Chun;Pyo, Hyeong-Bae;Choe, Tae-boo
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.12-25
    • /
    • 2003
  • L-camitine ($\beta$ -hydroxy-${\gamma}$ -trimethyl-ammoniumbutyric acid) is a small water-soluble molecule important in mammalian fat metabolism. It is essential for the normal oxidation of fatty acids by the mitochondria, and is involved in the trans-esterification and excretion of acyl-CoA esters. In this paper, to investigate the relationship between aging and L-camitine, we investigated the effects of in vitro MMP inhibition and activity and expression of UVA-induced MMP 1 in human skin fibroblasts. Fluorometric assays of the proteolytic activities of MMP-l were performed using fluorescent collagen substrates. ELISA (enzyme linked immuno sorbent assay), gelatin-substrate zymography, and RT-PCR ELISA techniques were used for the effects of L-camitine on MMP expression and activity, MMP mRNA expression in UVA irradiated fibroblast. L-camitine inhibited the activities of MMP-l in a dose-dependent manner and the $IC_{50}$/ values calculated from semi-log plots were 2.45mM, and L-carnitine showed strong inhibition on MMP-2 (gelatinase) activity in UVA irradiated fibroblast by zymography. Also, UVA induced MMP expression was reduced 40% by treated with L-carnitine, and MMP-l mRNA expression was reduced dose-dependent manner. Therefore L-carnitine was able to significantly inhibition the MMP activity, regulation of MMP expression in protein and mRNA level. All these results suggest that L-carnitine may be useful as new anti-aging cofactor for protection against UVA induced MMP expression and activity.

  • PDF

Astragalus membranaceus promotes differentiation and mineralization in human osteoblast-like SaOS-2 cells

  • Huh, Jeong-Eun;Kim, Nam-Jae;Yang, Ha-Ru;Cho, Eun-Mi;Baek, Yong-Hyeon;Choi, Do-Young;Kim, Deog-Yoon;Cho, Yoon-Je;Kim, Kang-Il;Park, Dong-Suk;Lee, Jae-Dong
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.181-190
    • /
    • 2005
  • Background & Object : The differentiation of osteoblasts controlled by various growth factors and matrix proteins expression in bone. The aim of this study was to identify the Astragalus membranaceus that may induce the osteogenic activity in human osteoblast-like SaOS-2 cells. Methods : The osteogenic activity of Astragalus membranaceus were evaluated by WST-8 assay, ALP activity, RT-PCR analysis of VEGF, OCN, OPN, Col I mRNA, and ELISA or colorimetric analysis, and mineralization by Alizarin red staining in SaOS-2 cells. Results : Astragalus membranaceus had no effect on viability of osteoblastic cells, and dose dependently increased alkaline phosphatase (ALP) activity. Astragalus membranaceus markedly increased mRNA expression for vascular endothelial growth factor (VEGF), osteocalcin (OCN), osteopontin (OPN), and type I collagen (Col 1) in SaOS-2 cells. Extracellular accumulation of proteins such as VEGF, and Col I was increased in a dose-dependent manner. Also, Astragalus membranaceus significantly induced mineralization in the culture of SaOS-2 cells. Conclusion : This study showed that Astragalus membranaceus not affect on viability, but it enhanced ALP activity, VEGF, bone matrix proteins such as OCN, OPN and Col I, and mineralization in SaOS-2 cells. These results propose that Astragalus membranaceus plays an important role in osteoblastic bone formation, and possibly lead to the development of bone-forming drug.

  • PDF

Effect of IgY on Periodontitis and Halitosis Induced by Fusobacterium nucleatum

  • Wang, Fang;Qiao, Wu;Bao, Bin;Wang, Shujun;Regenstein, Joe Mac;Shi, Yilei;Wu, Wenhui;Ma, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.311-320
    • /
    • 2019
  • Fusobacterium nucleatum is a morbific agent in periodontitis and halitosis. Egg yolk antibody (IgY) was obtained from egg yolks from chickens stimulated with F. nucleatum. This study was to assess the effectiveness of IgY on periodontitis and halitosis caused by F. nucleatum in vitro and in vivo. The growth of F. nucleatum was inhibited (p <0.05) by different concentrations of IgY in vitro and the results of a Halimeter show volatile sulfur compounds (VSCs) were reduced to $904{\pm}57ppb$ at a concentration 40 mg/ml of IgY. The changes of fatty acids of F. nucleatum were determined using GC-MS. The scores for odor index of rat saliva were decreased. The major constituent of volatile organic compounds (VOCs) including short-chain acids decreased 46.2% in 10 mg/ml IgY, ammonia decreased 70% in 40 mg/ml IgY, while aldehydes and olefine ketones were almost unchanged. The ELISA assay revealed that IL-6 and TNF-${\alpha}$ were decreased after 4 weeks' IgY treatment. Morphometric (X-ray) and histological analyses (HE) showed that IgY reduced alveolar bone loss and collagen fibers became orderly in rat models. As a result, IgY may have the potential to treat periodontitis and halitosis.

Combined effect of recombinant human bone morphogenetic protein-2 and low level laser irradiation on bisphosphonate-treated osteoblasts

  • Jeong, Seok-Young;Hong, Ji-Un;Song, Jae Min;Kim, In Ryoung;Park, Bong Soo;Kim, Chul Hoon;Shin, Sang Hun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.44 no.6
    • /
    • pp.259-268
    • /
    • 2018
  • Objectives: The purpose of this study was to evaluate the synergic effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) and low-level laser therapy (LLLT) on bisphosphonate-treated osteoblasts. Materials and Methods: Human fetal osteoblast cells (hFOB 1.19) were cultured with $100{\mu}M$ alendronate. Low-level Ga-Al-As laser alone or with 100 ng/mL rhBMP-2 was then applied. Cell viability was measured with MTT assay. The expression levels of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoprotegerin (OPG) were analyzed for osteoblastic activity inducing osteoclastic activity. Collagen type and transforming growth factor beta-1 were also evaluated for bone matrix formation. Results: The results showed that rhBMP-2 and LLLT had a synergic effect on alendronate-treated osteoblasts for enhancing osteoblastic activity and bone matrix formation. Between rhBMP-2 and LLLT, rhBMP-2 exhibited a greater effect, but did not show a significant difference. Conclusion: rhBMP-2 and LLLT have synergic effects on bisphosphonate-treated osteoblasts through enhancement of osteoblastic activity and bone formation activity.

Effect of Transcutaneous High Frequency Wave on the Change of Tissue Temperature and Histology in Sprague-Dawley Rat (백서에서 경피적 고주파 자극에 따른 온도 변화 및 조직 변화)

  • Kim, Kyung Ah;Moon, Chang Won;Song, Da-Hyun;Kim, Sang Jun
    • Clinical Pain
    • /
    • v.15 no.2
    • /
    • pp.92-96
    • /
    • 2016
  • Objective: High frequency wave has been used in cancer treatment and cosmetic area but not in musculoskeletal pain yet. The purpose of this study is to evaluate temperature distribution according to depth and confirm safety of high frequency wave through animal study. Method: High frequency wave was applied to the posterior limb of 9 Sprague-Dawley rats for 20 minutes (experimental group) and no wave was used in the same number of rats for control group. Tissue temperature was measured from skin surface to 1 cm depth (surface, 1 mm, 5 mm, and 1 cm) for 5 seconds. Results: In the experimental group, temperature was elevated 3.2℃ at skin surface, 2.87℃ at 1 mm, 2.25℃ in 5 mm, and 1.74℃ in 1 cm depth. These were significantly different from those in the control group (p<0.001). There was no bulla or redness in the skin after high frequency wave stimulation and neither change of myocytes nor collagen degeneration was found in the tissue histology. There was no apoptosis in the skin surface and muscle layer in TUNEL assay. Conclusion: High frequency wave elevated tissue temperature from the skin to muscle layer without both histologic change and apoptosis.

Effect of FTY-720 on Pulmonary Fibrosis in Mice via the TGF-β1 Signaling Pathway and Autophagy

  • Yuying Jin;Weidong Liu;Ge Gao;Yilan Song;Hanye Liu;Liangchang Li;Jiaxu Zhou;Guanghai Yan;Hong Cui
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.434-445
    • /
    • 2023
  • We investigated whether FTY-720 might have an effect on bleomycin-induced pulmonary fibrosis through inhibiting TGF-β1 pathway, and up-regulating autophagy. The pulmonary fibrosis was induced by bleomycin. FTY-720 (1 mg/kg) drug was intraperitoneally injected into mice. Histological changes and inflammatory factors were observed, and EMT and autophagy protein markers were studied by immunohistochemistry and immunofluorescence. The effects of bleomycin on MLE-12 cells were detected by MTT assay and flow cytometry, and the related molecular mechanisms were studied by Western Blot. FTY-720 considerably attenuated bleomycin-induced disorganization of alveolar tissue, extracellular collagen deposition, and α-SMA and E-cadherin levels in mice. The levels of IL-1β, TNF-α, and IL-6 cytokines were attenuated in bronchoalveolar lavage fluid, as well as protein content and leukocyte count. COL1A1 and MMP9 protein expressions in lung tissue were significantly reduced. Additionally, FTY-720 treatment effectively inhibited the expressions of key proteins in TGF-β1/TAK1/P38MAPK pathway and regulated autophagy proteins. Similar results were additionally found in cellular assays with mouse alveolar epithelial cells. Our study provides proof for a new mechanism for FTY-720 to suppress pulmonary fibrosis. FTY-720 is also a target for treating pulmonary fibrosis.

Ginseng saponin metabolite 20(S)-protopanaxadiol relieves pulmonary fibrosis by multiple-targets signaling pathways

  • Guoqing Ren;Weichao Lv;Yue Ding;Lei Wang;ZhengGuo Cui;Renshi Li;Jiangwei Tian;Chaofeng Zhang
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.543-551
    • /
    • 2023
  • Background: Panax ginseng Meyer is a representative Chinese herbal medicine with antioxidant and anti-inflammatory activity. 20(S)-Protopanaxadiol (PPD) has been isolated from ginseng and shown to have promising pharmacological activities. However, effects of PDD on pulmonary fibrosis (PF) have not been reported. We hypothesize that PDD may reverse inflammation-induced PF and be a novel therapeutic strategy. Methods: Adult male C57BL/6 mice were used to establish a model of PF induced by bleomycin (BLM). The pulmonary index was measured, and histological and immunohistochemical examinations were made. Cell cultures of mouse alveolar epithelial cells were analyzed with Western blotting, coimmunoprecipitation, immunofluorescence, immunohistochemistry, siRNA transfection, cellular thermal shift assay and qRT-PCR. Results: The survival rate of PPD-treated mice was higher than that of untreated BLM-challenged mice. Expression of fibrotic hallmarks, including α-SMA, TGF-β1 and collagen I, was reduced by PPD treatment, indicating attenuation of PF. Mice exposed to BLM had higher STING levels in lung tissue, and this was reduced by phosphorylated AMPK after activation by PPD. The role of phosphorylated AMPK in suppressing STING was confirmed in TGF-b1-incubated cells. Both in vivo and in vitro analyses indicated that PPD treatment attenuated BLM-induced PF by modulating the AMPK/STING signaling pathway. Conclusion: PPD ameliorated BLM-induced PF by multi-target regulation. The current study may help develop new therapeutic strategies for preventing PF.