The world wide web (WWW) already accounts f3r more Internee network traffic than any other application, including il and simple file transfer. It is also a collaborative technology in a weak sense of the word - it allows people to share information. Synchronous collaboration is where an interactive activity is simultaneous and in teal-time. Computer based real time collaborative systems like shared whiteboards. collaborative editor etc. are only beginning to emerge recently. These applications invoking more than two users exchanging information, require Multicast communication. Multicast communication is a transmission mode that is now supported by a variety of local and wide area networks. Multicasting enables multiparty communication across a wide area to sparsely distributed groups by minimizing the network load. Multicasting itself is one of the key technologies in the nut generation of the Internet This paper describes the technical issues from the aspect of multicast communication and its reliability in synchronous collaborative application.
Kim, Hyo-Jin;Chitti, Ramachandra Bhargav;Song, Joo-Seok
Journal of Information Processing Systems
/
제7권1호
/
pp.137-150
/
2011
Mobile ad hoc networks are expected to be widely used in the near future. However, they are susceptible to various security threats because of their inherent characteristics. Malicious flooding attacks are one of the fatal attacks on mobile ad hoc networks. These attacks can severely clog an entire network, as a result of clogging the victim node. If collaborative multiple attacks are conducted, it becomes more difficult to prevent. To defend against these attacks, we propose a novel defense mechanism in mobile ad hoc networks. The proposed scheme enhances the amount of legitimate packet processing at each node. The simulation results show that the proposed scheme also improves the end-to-end packet delivery ratio.
추천시스템은 사용자가 제공한 선호, 관심, 구매경험과 같은 정보를 근거로 하여 다른 사용자에게 가장 알맞은 정보를 제공하는 일련의 가치교환 과정인 개인화를 가능하게 하는 시스템으로 고객의 선호도를 정확히 분석하고, 정제하여 정확한 예측력으로 고객이 원하는 가장 적절한 상품을 추천 해줄 수 있어야 한다. 대부분의 추천시스템들이 협동적 필터링 기법을 적용하고 있어 본 논문에서는 협동적 필터링 기법의 연산수행 량을 개선한 새로운 결합 모델인 SOM(Self-Organizing Map) 신경망 회로와 결합한 추천시스템을 제안하였다. 먼저, 사용자 그룹을 인구통계학적인 특징으로 세그먼트하고 SOM 신경망회로를 이용하여 item 특징에 대한 선호도를 입력 값으로 학습하여 클러스터를 생성하였다. 임의의 사용자에 대한 추천은 선호도가 유사한 클러스터를 결정하여 협동적 필터링 기법을 적용하였으며, 기존의 협동적 필터링 기법의 연산 수행량과 비교 분석하였다. 또한 영화를 대상으로 한 실험을 통하여 추천효율이 향상되었음을 나타내었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권5호
/
pp.1516-1539
/
2022
This article shows a set of physical information fusion IoT systems that we designed for smart buildings. Its essence is a computer system that combines physical quantities in buildings with quantitative analysis and control. In the part of the Internet of Things, its mechanism is controlled by a monitoring system based on sensor networks and computer-based algorithms. Based on the design idea of the agent, we have realized human-machine interaction (HMI) and machine-machine interaction (MMI). Among them, HMI is realized through human-machine interaction, while MMI is realized through embedded computing, sensors, controllers, and execution. Device and wireless communication network. This article mainly focuses on the function of wireless sensor networks and MMI in environmental monitoring. This function plays a fundamental role in building security, environmental control, HVAC, and other smart building control systems. The article not only discusses various network applications and their implementation based on agent design but also demonstrates our collaborative information fusion strategy. This strategy can provide a stable incentive method for the system through collaborative information fusion when the sensor system is unstable in the physical measurements, thereby preventing system jitter and unstable response caused by uncertain disturbances and environmental factors. This article also gives the results of the system test. The results show that through the CPS interaction of HMI and MMI, the intelligent building IoT system can achieve comprehensive monitoring, thereby providing support and expansion for advanced automation management.
Interests on collaborative research and academic relationship among researchers have been increased. Collaborative researchers can maximize productivity, time and cost savings, and reduce the risk of research. An empirical study on the research productivity of co-authors' network and review efficiency of the reviewer network was conducted based on co-author networks and reviewer networks in Korea Society of IT Service. This study aims to find the characteristics of the co-author and reviewer networks, and to analyze research productivity and review efficiency in order to draw some implications. The meaning of interactions among professional groups was analyzed. Research productivity index was calculated using 728 authors' papers submitted to the society. In order to verify the effects of indicators of social network analysis on research productivity and review efficiency, correlation and regression analyses were used. As a result, the indicators of network centrality did not affect the review efficiency, but affect the research productivity.
This paper aims to assess the feasibility of a new and less-focused type of online sociability (the watching network) as a useful information source for personalized recommendations. In this paper, we recommend scientific articles of interests by using the shared interests between target users and their watching connections. Our recommendations are based on one typical social bookmarking system, CiteULike. The watching network-based recommendations, which use a much smaller size of user data, produces suggestions that are as good as the conventional Collaborative Filtering technique. The results demonstrate that the watching network is a useful information source and a feasible foundation for information personalization. Furthermore, the watching network is substitutable for anonymous peers of the Collaborative Filtering recommendations. This study shows the expandability of social network-based recommendations to the new type of online social networks.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권7호
/
pp.1749-1773
/
2024
Recent advances in deep neural networks (DNNs) have greatly improved the accuracy and universality of various intelligent applications, at the expense of increasing model size and computational demand. Since the resources of end devices are often too limited to deploy a complete DNN model, offloading DNN inference tasks to cloud servers is a common approach to meet this gap. However, due to the limited bandwidth of WAN and the long distance between end devices and cloud servers, this approach may lead to significant data transmission latency. Therefore, device-edge collaborative inference has emerged as a promising paradigm to accelerate the execution of DNN inference tasks where DNN models are partitioned to be sequentially executed in both end devices and edge servers. Nevertheless, collaborative inference in heterogeneous edge environments with multiple edge servers, end devices and DNN tasks has been overlooked in previous research. To fill this gap, we investigate the optimization problem of collaborative inference in a heterogeneous system and propose a scheme CIS, i.e., collaborative inference scheme, which jointly combines DNN partition, task offloading and scheduling to reduce the average weighted inference latency. CIS decomposes the problem into three parts to achieve the optimal average weighted inference latency. In addition, we build a prototype that implements CIS and conducts extensive experiments to demonstrate the scheme's effectiveness and efficiency. Experiments show that CIS reduces 29% to 71% on the average weighted inference latency compared to the other four existing schemes.
As social network services has become one of the most successful web-based business, recommendation in social network sites that assist people to choose various products and services is also widely adopted. Collaborative Filtering is one of the most widely adopted recommendation approaches, but recommendation technique that use explicit or implicit social network information from social networks has become proposed in recent research works. In this paper, we reviewed and compared research works about recommendation using social network analysis and collaborative filtering in social network sites. As the results of the analysis, we suggested the trends and implications for future research of recommendation in SNSs. It is expected that graph-based analysis on the semantic social network and systematic comparative analysis on the performances of social filtering and collaborative filtering are required.
Cruz, Jose Roberto Perez;Hernandez, Saul E. Pomares;Cote, Enrique Munoz De
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권1호
/
pp.229-240
/
2012
Advances in MEMS and CMOS technologies have motivated the development of low cost/power sensors and wireless multimedia sensor networks (WMSN). The WMSNs were created to ubiquitously harvest multimedia content. Such networks have allowed researchers and engineers to glimpse at new Machine-to-Machine (M2M) Systems, such as remote monitoring of biosignals for telemedicine networks. These systems require the acquisition of a large number of data streams that are simultaneously generated by multiple distributed devices. This paradigm of data generation and transmission is known as event-streaming. In order to be useful to the application, the collected data requires a preprocessing called data fusion, which entails the temporal alignment task of multimedia data. A practical way to perform this task is in a centralized manner, assuming that the network nodes only function as collector entities. However, by following this scheme, a considerable amount of redundant information is transmitted to the central entity. To decrease such redundancy, data fusion must be performed in a collaborative way. In this paper, we propose a collaborative data alignment approach for event-streaming. Our approach identifies temporal relationships by translating temporal dependencies based on a timeline to causal dependencies of the media involved.
협업적 여과 시스템은 사용자에 대한 클러스터링을 구축한 후, 구축된 클러스터를 기반으로 사용자에게 아이템을 추천한다. 그러나 사용자 클러스터링 구축에 많은 시간이 소요되고, 사용자가 평가한 아이템이 피드백 되었을 경우 재구축이 쉽지 않다. 본 논문에서는 영화 추천 시스템에서의 사용자 클러스터링의 재구축 시간을 단축시키기 위해서 빈발 패턴 네트워크를 이용하여 사용자가 선호하는 장르 패턴을 추출하고, 추출된 패턴을 통해 사용자 클러스터링을 구축한다. 구축된 사용자 클러스터링을 협업적 여과에 적용하여 사용자에게 영화를 추천한다. 사용자 정보가 피드백 될 때, 전통적 협업적 여과는 사용자 클러스터링을 재구축하기 위해 모든 이웃 사용자를 재탐색하여 클러스터링 한다. 하지만 빈발 패턴 네트워크를 이용하여 장르 패턴 기반의 사용자 클러스터링을 적용한 협업적 여과는 사용자 클러스터링을 재구축시 사용자 탐색 공간을 국한시킴으로써 탐색 시간을 줄일 수 있다. 제안하는 장르 패턴기반의 사용자 클러스터링을 통해 사용자 정보가 피드백 된 후 사용자 클러스터를 재구축시 소요되는 시간을 줄일 수 있고, 전통적인 협업적 여과 시스템과 유사한 성능의 추천이 가능하게 되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.