• Title/Summary/Keyword: collaborative computation

Search Result 47, Processing Time 0.028 seconds

Semi-trusted Collaborative Framework for Multi-party Computation

  • Wong, Kok-Seng;Kim, Myung-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.411-427
    • /
    • 2010
  • Data sharing is an essential process for collaborative works particularly in the banking, finance and healthcare industries. These industries require many collaborative works with their internal and external parties such as branches, clients, and service providers. When data are shared among collaborators, security and privacy concerns becoming crucial issues and cannot be avoided. Privacy is an important issue that is frequently discussed during the development of collaborative systems. It is closely related with the security issues because each of them can affect the other. The tradeoff between privacy and security is an interesting topic that we are going to address in this paper. In view of the practical problems in the existing approaches, we propose a collaborative framework which can be used to facilitate concurrent operations, single point failure problem, and overcome constraints for two-party computation. Two secure computation protocols will be discussed to demonstrate our collaborative framework.

A Cloud-Edge Collaborative Computing Task Scheduling and Resource Allocation Algorithm for Energy Internet Environment

  • Song, Xin;Wang, Yue;Xie, Zhigang;Xia, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2282-2303
    • /
    • 2021
  • To solve the problems of heavy computing load and system transmission pressure in energy internet (EI), we establish a three-tier cloud-edge integrated EI network based on a cloud-edge collaborative computing to achieve the tradeoff between energy consumption and the system delay. A joint optimization problem for resource allocation and task offloading in the threetier cloud-edge integrated EI network is formulated to minimize the total system cost under the constraints of the task scheduling binary variables of each sensor node, the maximum uplink transmit power of each sensor node, the limited computation capability of the sensor node and the maximum computation resource of each edge server, which is a Mixed Integer Non-linear Programming (MINLP) problem. To solve the problem, we propose a joint task offloading and resource allocation algorithm (JTOARA), which is decomposed into three subproblems including the uplink transmission power allocation sub-problem, the computation resource allocation sub-problem, and the offloading scheme selection subproblem. Then, the power allocation of each sensor node is achieved by bisection search algorithm, which has a fast convergence. While the computation resource allocation is derived by line optimization method and convex optimization theory. Finally, to achieve the optimal task offloading, we propose a cloud-edge collaborative computation offloading schemes based on game theory and prove the existence of Nash Equilibrium. The simulation results demonstrate that our proposed algorithm can improve output performance as comparing with the conventional algorithms, and its performance is close to the that of the enumerative algorithm.

Collaborative Recommendations using Adjusted Product Hierarchy : Methodology and Evaluation (재구성된 제품 계층도를 이용한 협업 추천 방법론 및 그 평가)

  • Cho, Yoon-Ho;Park, Su-Kyung;Ahn, Do-Hyun;Kim, Jae-Kyeong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.2
    • /
    • pp.59-75
    • /
    • 2004
  • Recommendation is a personalized information filtering technology to help customers find which products they would like to purchase. Collaborative filtering works by matching customer preferences to other customers in making recommendations. But collaborative filtering based recommendations have two major limitations, sparsity and scalability. To overcome these problems we suggest using adjusted product hierarchy, grain. This methodology focuses on dimensionality reduction and uses a marketer's specific knowledge or experience to improve recommendation quality. The qualify of recommendations using each grain is compared with others by several experimentations. Experiments present that the usage of a grain holds the promise of allowing CF-based recommendations to scale to large data sets and at the same time produces better recommendations. In addition. our methodology is proved to save the computation time by 3∼4 times compared with collaborative filtering.

Recommendation Algorithm by Item Classification Using Preference Difference Metric (Preference Difference Metric을 이용한 아이템 분류방식의 추천알고리즘)

  • Park, Chan-Soo;Hwang, Taegyu;Hong, Junghwa;Kim, Sung Kwon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.2
    • /
    • pp.121-125
    • /
    • 2015
  • In recent years, research on collaborative filtering-based recommendation systems emphasized the accuracy of rating predictions, and this has led to an increase in computation time. As a result, such systems have divergeded from the original purpose of making quick recommendations. In this paper, we propose a recommendation algorithm that uses a Preference Difference Metric to reduce the computation time and to maintain adequate performance. The system recommends items according to their preference classification.

Design of Collaborative Response Framework Based on the Security Information Sharing in the Inter-domain Environments (도메인간 보안 정보 공유를 통한 협력 대응 프레임워크 설계)

  • Lee, Young-Seok;An, Gae-Il;Kim, Jong-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.605-612
    • /
    • 2011
  • Recently, cyber attacks against public communications networks are getting more complicated and varied. Moreover, in some cases, one country could make systematic attacks at a national level against another country to steal its confidential information and intellectual property. Therefore, the issue of cyber attacks is now regarded as a new major threat to national security. The conventional way of operating individual information security systems such as IDS and IPS may not be sufficient to cope with those attacks committed by highly-motivated attackers with significant resources. In this paper, we discuss the technologies and standard trends about actual cyber threat and response methods, design the collaborative response framework based on the security information sharing in the inter-domain environments. The computation method of network threat level based on the collaborative response framework is proposed. The network threats are be quickly detected and real-time response can be executed using the proposed computation method.

A Recommendation System for Repetitively Purchasing Items in E-commerce Based on Collaborative Filtering and Association Rules

  • Yoon Kyoung Choi;Sung Kwon Kim
    • Journal of Internet Technology
    • /
    • v.19 no.6
    • /
    • pp.1691-1698
    • /
    • 2018
  • In this paper, we are to address the problem of item recommendations to users in shopping malls selling several different kinds of items, e.g., daily necessities such as cosmetics, detergent, and food ingredients. Most of current recommendation algorithms are developed for sites selling only one kind of items, e.g., music or movies. To devise efficient recommendation algorithms suitable for repetitively purchasing items, we give a method to implicitly assign ratings for these items by making use of repetitive purchase counts, and then use these ratings for the purpose of recommendation prediction with the help of user-based collaborative filtering and item-based collaborative filtering algorithms. We also propose associate item-based recommendation algorithm. Items are called associate items if they are frequently bought by users at the same time. If a user is to buy some item, it is reasonable to recommend some of its associate items. We implement user-based (item-based) collaborative filtering algorithm and associate item-based algorithm, and compare these three algorithms in view of the recommendation hit ratio, prediction performance, and recommendation coverage, along with computation time.

Modelling Civic Problem-Solving in Smart City Using Knowledge-Based Crowdsourcing

  • Syed M. Ali Kamal;Nadeem Kafi;Fahad Samad;Hassan Jamil Syed;Muhammad Nauman Durrani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.146-158
    • /
    • 2023
  • Smart City is gaining attention with the advancement of Information and Communication Technology (ICT). ICT provides the basis for smart city foundation; enables us to interconnect all the actors of a smart city by supporting the provision of seamless ubiquitous services and Internet of Things. On the other hand, Crowdsourcing has the ability to enable citizens to participate in social and economic development of the city and share their contribution and knowledge while increasing their socio-economic welfare. This paper proposed a hybrid model which is a compound of human computation, machine computation and citizen crowds. This proposed hybrid model uses knowledge-based crowdsourcing that captures collaborative and collective intelligence from the citizen crowds to form democratic knowledge space, which provision solutions in areas of civic innovations. This paper also proposed knowledge-based crowdsourcing framework which manages knowledge activities in the form of human computation tasks and eliminates the complexity of human computation task creation, execution, refinement, quality control and manage knowledge space. The knowledge activities in the form of human computation tasks provide support to existing crowdsourcing system to align their task execution order optimally.

A Study on the Multidisciplinary Design Optimization Using Collaborative Optimization Approach (협동 최적화 접근 방법에 의한 타분야 최적 설계에 관한 연구)

  • 노명일;이규열
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.3
    • /
    • pp.263-275
    • /
    • 2000
  • Multidisciplinary design optimization(MDO) can yield optimal design considering all the disciplinary requirements concurrently. A method to implement the collaborative optimization(CO) approach, one of the MDO methodologies, is developed using a pre-compiler “EzpreCompiler”, a design optimization library “EzOptimizer”, and a common object request broker architecture(CORBA) in distributed computing environment. The CO approach is applied to a mathematical example to show its applicability and equivalence to standard optimization(SO) formulation. In a realistic engineering problem such as optimal design of a two-member hub frame, optimal design of a speed reducer and initial design of a bulk carrier, the CO yields better results than the SO. Furthermore, the CO allows the distributed processing using the CORBA, which leads to reduction of overall computation time.

  • PDF

A Rank-based Similarity Measure for Collaborative Filtering Systems (협력 필터링 시스템을 위한 순위 기반의 유사도 척도)

  • Lee, Soo-Jung
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.5
    • /
    • pp.97-104
    • /
    • 2011
  • Collaborative filtering is a methodology to recommend websites by obtaining data and opinions from the other users with similar tastes. During the past few years, this method has been used in various fields such as books, food, and movies in e-commerce systems. This study addresses the computation of similarity between users to determine items to be recommended in collaborative filtering systems. Previous studies measured similarity between users by treating each user's ratings independently without considering the distribution of the user's ratings. In contrast, this study measures similarity by utilizing position and rank information of each rating in the range of the user's ratings. The result of the experiments on the real datasets demonstrated that the proposed method improves the mean absolute error significantly, compared to the previous methods, especially when the predetermined range of ratings is large.

  • PDF

Collaborative Filtering System using Self-Organizing Map for Web Personalization (자기 조직화 신경망(SOM)을 이용한 협력적 여과 기법의 웹 개인화 시스템에 대한 연구)

  • 강부식
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.117-135
    • /
    • 2003
  • This study is to propose a procedure solving scale problem of traditional collaborative filtering (CF) approach. The CF approach generally uses some similarity measures like correlation coefficient. So, as the user of the Website increases, the complexity of computation increases exponentially. To solve the scale problem, this study suggests a clustering model-based approach using Self-Organizing Map (SOM) and RFM (Recency, Frequency, Momentary) method. SOM clusters users into some user groups. The preference score of each item in a group is computed using RFM method. The items are sorted and stored in their preference score order. If an active user logins in the system, SOM determines a user group according to the user's characteristics. And the system recommends items to the user using the stored information for the group. If the user evaluates the recommended items, the system determines whether it will be updated or not. Experimental results applied to MovieLens dataset show that the proposed method outperforms than the traditional CF method comparatively in the recommendation performance and the computation complexity.

  • PDF