• Title/Summary/Keyword: coli

Search Result 7,502, Processing Time 0.032 seconds

Control of Organic Acid Inhibition in Escherichia coli Culture with Eledtroudialysis (유기산의 저해를 조절하기 위한 Escherichia coli의 전기투석배양)

  • 김인호;윤태호
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.747-754
    • /
    • 1995
  • E. coli growth is inhibited by organic acids produced in the broth. In order to reduce the inhibition, an electrodialysis unit was used. Model solutions (acetic acid plus distilled water or M-9 medium) were tested in the unit for investigating the optimum condition of current and voltage. Electrodialysis cultures were performed with the optimum condition where the highest current efficiency could be attained. The distilled water plus acetic acid gave us a higher current efficiency than the M-9 plus acetic acid. Electrodialysis efficiently removed acetic acid and so enhanced the specific growth rate of E. coli compared with the control experiment without clectrodialysis.

  • PDF

Biosynthesis of Two Flavones, Apigenin and Genkwanin, in Escherichia coli

  • Lee, Hyejin;Kim, Bong Gyu;Kim, Mihyang;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1442-1448
    • /
    • 2015
  • The flavonoid apigenin and its O-methyl derivative, genkwanin, have various biological activities and can be sourced from some vegetables and fruits. Microorganisms are an alternative for the synthesis of flavonoids. Here, to synthesize genkwanin from tyrosine, we first synthesized apigenin from p-coumaric acid using four genes (4CL, CHS, CHI, and FNS) in Escherichia coli. After optimization of different combinations of constructs, the yield of apigenin was increased from 13 mg/l to 30 mg/l. By introducing two additional genes (TAL and POMT7) into an apigenin-producing E. coli strain, we were able to synthesize 7-O-methyl apigenin (genkwanin) from tyrosine. In addition, the tyrosine content in E. coli was modulated by overexpressing aroG and tyrA. The engineered E. coli strain synthesized approximately 41 mg/l genkwanin.

Lycopene-Induced Hydroxyl Radical Causes Oxidative DNA Damage in Escherichia coli

  • Lee, Wonyoung;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1232-1237
    • /
    • 2014
  • Lycopene, which is a well-known red carotenoid pigment, has been drawing scientific interest because of its potential biological functions. The current study reports that lycopene acts as a bactericidal agent by inducing reactive oxygen species (ROS)-mediated DNA damage in Escherichia coli. Lycopene treatment elevated the level of ROS-in particular, hydroxyl radicals ($^*OH$)-which can damage DNA in E. coli. Lycopene-induced DNA damage in bacteria was confirmed and we also observed cell filamentation caused by cell division arrest, an indirect marker of the DNA damage repair system, in lycopene-treated E. coli. Increased RecA expression was observed, indicating activation of the DNA repair system (SOS response). To summarize, lycopene exerts its antibacterial effects by inducing $^*OH$-mediated DNA damage that cannot be ameliorated by the SOS response. Lycopene may be a clinically useful adjuvant for current antimicrobial therapies.

Construction of Methanol-Sensing Escherichia coli by the Introduction of a Paracoccus denitrificans MxaY-Based Chimeric Two-Component System

  • Ganesh, Irisappan;Vidhya, Selvamani;Eom, Gyeong Tae;Hong, Soon Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1106-1111
    • /
    • 2017
  • Escherichia coli was engineered to sense methanol by employing a chimeric two-component system (TCS) strategy. A chimeric MxaY/EnvZ (MxaYZ) TCS was constructed by fusing the Paracoccus denitrificans MxaY with the E. coli EnvZ. Real-time quantitative PCR analysis and GFP-based fluorescence analysis showed maximum transcription of ompC and the fluorescence at 0.01% of methanol, respectively. These results suggested that E. coli was successfully engineered to sense methanol by the introduction of chimeric MxaYZ. By using this strategy, various chimeric TCS-based bacterial biosensors can be constructed and used for the development of biochemical-producing recombinant microorganisms.

The inhibitory effect of natural bioactives on the growth of pathogenic bacteria

  • Kim, Ji-Sun;Kim, Yang-Ha
    • Nutrition Research and Practice
    • /
    • v.1 no.4
    • /
    • pp.273-278
    • /
    • 2007
  • The objective of this study was to evaluate the inhibitory activity of natural products, against growth of Escherichia coli (ATCC 25922) and Salmonella typhimurium (KCCM 11862). Chitosan, epigallocatechin gallate (EGCG), and garlic were used as natural bioactives for antibacterial activity. The testing method was carried out according to the disk diffusion method. All of chitosan, EGCG, and garlic showed inhibitory effect against the growth of E. coli and Salmonella typhi. To evaluate the antibacterial activity of natural products during storage, chicken skins were inoculated with $10^6$ of E. coli or Salmonella typhi. The inoculated chicken skins, treated with 0.5, 1, or 2% natural bioactives, were stored during 8 day at $4^{\circ}C$. The numbers of microorganisms were measured at 8 day. Both chitosan and EGCG showed significant decrease in the number of E. coli and Salmonella typhi in dose dependent manner (P < 0.05). These results suggest that natural bioactives such as chitosan, EGCG may be possible to be used as antimicrobial agents for the improvement of food safety.

Overexpression of Escherichia coli Thiol Peroxidase in the Periplasmic Space

  • Kim, Sung-Jin;Cha, Mee-Kyung;Kim, Il-Han;Kim, Ha-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.92-95
    • /
    • 1998
  • Overproduction of Escherichia coli thiol peroxidase in the periplasmic space was achieved by locating the appropriate gene on a downstream region of the strong T7 promoter. E. coli strain BL21 carrying the recombinant plasmid pSK-TPX was induced by IPTG, lysed, and analyzed by SDS-polyacrylamide gel electrophoresis. A large amount of the overexpressed thiol peroxidase was located in the periplasmic space. A homogeneous thiol peroxidase was obtained from E. coli osmotic shock fluid by simple one-step gel permeation chromatography.

  • PDF

Inactivation of E. coli by Electrolysis+UV Process (전기+UV 공정에 의한 E. coli 불활성화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.667-673
    • /
    • 2009
  • This study has carried out to evaluate the performance of single (electrolysis, UV and ultrasonic process) and complex process (Electrolysis+UV, UV+Ultrasonic and Electrolysis+Ultrasonic) for the purpose of disinfection of Escherichia coli in water. The order of disinfection performance for E. coli in single process lie in: Electrolysis ${\fallingdotseq}$ UV >> ultrasonic process. OH radical was not produced in single disinfection process. Among the three kinds of complex process, disinfection performance of the Electrolysis+UV was higher than that of the other process (UV+Ultrasonic and Electrolysis+Ultrasonic). It demonstrated a synergetic effect between the UV and electrolysis. When the use of $Na_2SO_4$ as electrolyte instead of NaCl, current increase or more reaction time was needed for the complete disinfection. The disinfection performance of pre-electrolysis (20 W, 30sec) and post-UV (10 W, 30 sec) was higher than that of the simultaneous electrolysis+UV process at same electric power (30 W, 30 second).

Induced reactivation of T3 phage in ozone treated strains of Escherichia coli B (오존 처리된 E. coli B 에서의 T3 파아지의 재활성 유도)

  • LHerault Pierre
    • Korean Journal of Microbiology
    • /
    • v.25 no.2
    • /
    • pp.117-121
    • /
    • 1987
  • The ozone-induced reactivation factor for ozonated or UV-irradiated T3 phage was determined in defferent bacterial strains of Escherichia coli B resistant of sensitive to ozone. Our results suggest that ozone is a weak, if any at all, inducer of the Weigle reactivation, one of the SOS functions. This is in agreement with other studies which have suggested that thes agent is probably a weak inducer of the SOS functions.

  • PDF

Soluble Expression of Human Angiostatin and Endostatin by Maltose Binding Protein (MBP) Fusion in E. coli (Maltose Binding Protein 융합단백질에 의한 인간유래의 앤지오스타틴과 앤도스타틴의 대장균에서 수용성 단백질발현)

  • Paek, Seon-Yeol;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.59-63
    • /
    • 2008
  • Rapid production of therapeutic proteins such as angiostatin and endostatin angiogenic inhibititors has been highly demanded for cancer treatment. In this regard, recombinant human angiostatin and endostatin were successfully expressed as soluble forms by maltose binding protein (MBP)-mediated fusion expression in Escherichia coli. PCR amplified, angiostatin and endostatin genes from human placenta cDNA library were inserted into an expression vector pMAL-c2e to construct prokaryotic expression vectors, pMAL-c2e/AS and pMAL-c2e/ES, respectively. Recombinant angiostatin and endostatin were efficiently expressed in E. coli origami (DE3) after IPTG induction and protein expression were confirmed by SDS-PAGE analyses. The expressed recombinant proteins were purified near homogenity using an amylose affinty column chromatography. In contrast that previous E. coli expressions were all insoluble, our results first time demonstrated that MBP fused human angiostatin and endostatin were soluble in E. coli.

  • PDF

Selection of Microorganisms for Probiotics and Their Characterization (생균제로서 가능성이 있는 미생물의 선별 및 특성)

  • 박홍석;이선희;엄태붕
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.3
    • /
    • pp.433-440
    • /
    • 1998
  • In order to select probiotics with a high survival rate in gut and the growth inhibition of virulent pathogens to human beings or animals, we have examined a variety of microorganisms to assess the acid, bile, and pancreatic tolerance and the growth inhibition of E. colt O8 and Salmonella choleraesuis ATCC 8391. Lactobacillus acidophilus KCTC 3155 was shown to inhibit the growth of E. coli and Salmonella dramatically within 24 h of incubation, although it was vulnerable to the exposure of bile acids. Bacillus polyfermenticus showed a good growth inhibition against E. coli, with a moderate acid and bile tolerance, while Clostridium butyricum KCTC 1786 inhibited the growth of E. coli and Salmonella slightly with a good bile tolerance. However, Saccharomyces cerevisiae KCTC 7928 and Aspergillus oryzae KCTC 6075 did not inhibit the growth of E. coli and Salmonella, suggesting that these microorganisms can be used as the sources of nutritional suppliment rather than as probiotics itself.

  • PDF