• Title/Summary/Keyword: cold preservation

Search Result 204, Processing Time 0.03 seconds

A Study on the Integrated Fusion Technology Between a Carbon Dioxide Emission and a District Cooling Energy Using a Cold Energy ($CO_2$ 배출문제와 냉열이용 지역집단 냉방에너지에 관한 통합적 융합기술 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.34-40
    • /
    • 2006
  • This paper provides a fusion technology between a district cooling energy system and an environment conservation policy based on the energy savings and reusable cold energy resources. The district heating and cooling systems are very effective ways for an energy saving, a cost reduction and a safety control. It is necessary to equalize the energy savings and an environmental preservation policy for an improved human lift. A gasification process of a liquefied natural gas, cooling water from deep seawater and an ice water thermal storage system may produce a cold energy. A district cooling system is used to cool an apartment, office buildings and factory facilities with a cooling energy supply pipeline. LNG cooling energy will switch a conventional air-conditioning system, which is operated by on electrical energy and a Freon refrigerant. Coincident with significant clean energy and operating cost savings, LNG cold energy system owen radical reductions in an air-borne pollutant, $CO_2$ and the release of environmentally harmful refrigerants compared with that of the conventional air-conditioning system. This study provides useful information on the fusion technology of a LNG cold energy usage and energy savings, and environmental conservation.

  • PDF

Quality characteristics of Aronia melanocarpa by different drying method (건조방법에 따른 아로니아의 품질특성)

  • Lee, Seul;Kim, Jong-Kuk
    • Food Science and Preservation
    • /
    • v.22 no.1
    • /
    • pp.56-62
    • /
    • 2015
  • In this study, the quality characteristics of different drying methods of Aronia melanocarpa, which contains large amounts of bioactive substances, were investigated for the improvement of their practical use. During the drying period, the weight reduction was the highest with vacuum freeze drying (81.6%). The water content was reduced to the maximum level when vacuum freeze-drying was used. With regard to the color value measurement results, there were no significant differences in the $L^*$ value. Values of $a^*$ and $b^*$ were increased in vacuum freeze drying and cold air drying, but decreased in hot air drying. The hardness was increased dramatically after 36 hours of hot air drying, while with cold air drying, it increased slowly until 132 hr and increased rapidly after 132 hr. The dried yield was the highest with cold air drying (24.2%). As for the general component analysis results of Aronia melanocarpa, the moisture content was the lowest, and the crude protein and crude fat contents were the highest with vacuum freeze drying. No difference in pH value was shown among the dried Aronia melanocarpa obtained from the different drying methods, but the sugar content was the highest with vacuum freeze drying. The mineral content was the highest with cold air drying, and K, Ca, Mg, and Na were the major minerals. The free sugar content of dried Aronia melanocarpa was found to be 5.92~20.59 g/100 g, and the highest free sugar content was found with vaccum freeze drying.

Biological activities in Aronia melanocarpa depending on drying methods (건조방법에 따른 아로니아의 생리활성)

  • Lee, Seul;Moon, Hey-Kyung;Lee, Su-Won;Moon, Jae-Nam;Kim, Jong-Kuk
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.1018-1025
    • /
    • 2016
  • To investigate biological activities in Aronia melanocarpa various drying methods were employed such as vacuum freeze drying, hot air drying and cold air drying. DPPH radical scavenging activity and ABTS radical scavenging activity of vacuum freeze dried Aronia melanocarpa was higher than hot and cold air dried Aronia melanocarpa. Vacuum freeze drying method showed the greatest contents of total phenol (15.34 g GAE/100 g), flavonoid (3.10 g GE/100 g) and tannin (2.46 g TE/100 g). Total anthocyanin content decreased to 163.52 mg C3G/100 g and 50.15 mg C3G/100 g for hot and cold air drying, respectively. Vacuum freeze-dried method increased the total anthocyanin content (743.09 mg C3G/100 g) when compared with fresh Aronia melanocarpa (163.52 mg C3G/100 g). Total proanthocyanidin content of vacuum freeze dried Aronia melanocarpa has increased to 6.21 g CE/100 g more than eight times compared with fresh Aronia melanocarpa (0.71 g CE/100 g). Chlorogenic acid and neochlorogenic acid content of vacuum freeze dried Aronia melanocarpa were higher than hot air dried and cold air dried Aronia melanocarpa, increasing about three times compared with fresh Aronia melanocarpa. These results suggested that vacuum freeze drying is optimal drying method to enhance biological activities in Aronia melanocarpa.

Resistance and Survival of Cronobacter sakazakii under Environmental Stress of Low Temperature (저온 환경에서 Cronobacter sakazakii의 저항과 생존)

  • Kim, Se-Hun;Jang, Sung-Ran;Chung, Hyun-Jung;Bang, Woo-Suk
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.612-619
    • /
    • 2011
  • Cronobacter sakazakii has been isolated from a wide range of environmental sources and from several foods of animal and plant origin. The objective of this study was to determine the resistance of C. sakazakii (ATCC 12868, ATCC 29004, and ATCC 29544) in cold, cold-freeze thaw, cold-acid, and cold starvation-freeze thaw stress. The number of C. sakazakii decreased to 1 log CFU/mL at $5^{\circ}C$ (cold storage) for 10 days. When C. sakazakii was cultivated at a low temperature ($13^{\circ}C$), the population of C sakazakii ATCC 12868 and 29004 increased to $10^9$ CFU/mL, and the population of C. sakazakii ATCC 29544 increased to $10^8$ CFU/mL. For C. sakazakii ATCC 12868 and 29004, the cold-adapted cells ($5^{\circ}C$ 24 hr) decreased by 4 log CFU/mL, and the low-temperature-cultivated cells ($13^{\circ}C$) decreased by 0.5 log CFU/mL. In this study, low-temperature cultivation enhanced the freeze-thaw cross-resistance due to the metabolic changes in the cells. Cold stress ($5^{\circ}C$ 48 hr, $13^{\circ}C$ cultivation) enhanced the cold-acid cross-resistance. The cold-starved cells in the sterilized 0.1% peptone water enhanced the freeze-thaw cross-resistance with significant differences (p<0.05). Therefore, the increased tolerance of the cold-adapted or low-temperature-cultivated C. sakazakii cells to freeze-thaw, acid, or starvation suggests that such environments should be considered when processing minimally processed foods or foods with extended shelf life.

Experimental Studies on the Cold Storage of the Rabbit Heart for Transplantation (이식을 위한 심장의 장시간 보존에 관한 실험)

  • No, Jung-Gi;Lee, Cheol-Se;Lee, Gil-No
    • Journal of Chest Surgery
    • /
    • v.22 no.6
    • /
    • pp.887-893
    • /
    • 1989
  • Donor availability is a major limiting factor in heart transplantation. Prolonging donor heart preservation would facilitate distant heart procurement. The setup used was the isolated retrograde perfused nonworking rabbit heart model and 4 hours of preservation at 2oC. And the electron microscopic findings of the myocardium were evaluated after reperfusion for 5 minutes. The following three groups [each group, n=4] were prepared: Group I: the heart was arrested with the St. Thomas Hospital solution [STH] and stored in Ringers lactate solution [RLS]; Group II: the heart was arrested with STH and stored in Modified Collins-Sachs solution [MCS]; Group g: the heart was arrested with and stored in MCS. The result was the most severe myocardial injury in the Group III on electron microscopic study.

  • PDF

Effect of Precooling on Removal of Field Heat and Respiration Rate of Vegetable Corn(Zes Mays L.) (예냉처리가 풋옥수수의 냉각속도 및 호흡량 변화에 미치는 영향)

  • 손영구;김성열
    • Food Science and Preservation
    • /
    • v.3 no.1
    • /
    • pp.55-60
    • /
    • 1996
  • To obtain the basic data on precooling effects for establishment the suitable postharvest handling technique or method of keeping high quality of vegetalble corn, the sweet, supersweet and waxy corn, (Danok #2, Cocktail #86 and Chalok #1), being mainly consumed as vegetables in Korea, were precooled with ice or vacuum cooling method immediately after harvest. The vacuum cooling was the most effective for the field heat removal of vegetable corn. It took only 30 min. at 4 to 5 torr of cold chamber pressure of vacuum precooler to lower the corn temperature from 30 to 2$^{\circ}C$. The ice cooling was also thought to be a useful precooling method with relatively short cooling time of 6 hrs. The vegetable corn treated with vacuum or ice cooling showed low and stable respiration rates of 25.5 to 43.5 CO2 mg/kg/hr. when stored at 0∼2$^{\circ}C$ while the samples stored at room temperature (20∼25$^{\circ}C$) without precooling were as high as 64.1 to 245 CO, mg/kg/hr.

  • PDF

Effect of Stroage on the Tree and Quality of Early Variety of Citrus unshiu Produced in Cheju According to Harvest Time (수확시기에 따른 조생온주 밀감의 품질과 수상저장 효과)

  • 고정삼;양영택
    • Food Science and Preservation
    • /
    • v.4 no.2
    • /
    • pp.131-137
    • /
    • 1997
  • Effect of storage on the tree and quality of early cultivar of Citrus unshiu Marc. produced in Cheju according to harvest time were investigated. Soluble solids, acid content, flesh ratio, firmness and specific cavity of the fruits harvested at 27th of November were 12.0, 1.03%, 79.98%, 0.774kg-force, 0.912, respectively. Soluble solids, total sugar and reducing sugar were increased gradually, but acid content was decreased slightly as delayed in harvest time. Otherwise specific gravity and firmness were not shown in great during harvest time, color index(a/b) was increased sharply till late November and then remained in stationary phase. On these result, we recommend that the harvest time of early cultivar of Citrus unshiu Marc. would be during December because of wilting partly. Fully ripened-fruits harvested late, compared to ordinary harvest time, with cold storage would be kept more quality and freshness of fruits for fresh consumption than the fruits harvested early and stored at room temperature.

  • PDF

Changes of Paeoniflorin Content in Peony Roots by Heat-treatment (열처리에 의한 작약의 Paeoniflorin 함량 변화)

  • 김태강;김광중
    • Food Science and Preservation
    • /
    • v.4 no.1
    • /
    • pp.69-75
    • /
    • 1997
  • Peony is a medicinal herb which have utilized widely as chineses medicine. The paeoniflorin is the predominant component In peony root, monoterpene glucoside containing pinane structure. The effective components were extracted with the cold water from the intact peony roots, and effectively extracted with 70% ethanol from the dry powder of peony roots. The changes of paeoniflorin contents were investigated during the drying process of peony roots and processing of peony extract by the heat-treatment. Air-drying was the best condition for the preservation of paeoniflorin content among the drying processes of peony roots. But convective drying at 6$0^{\circ}C$ was recommended for the drying process of peony roots in large scale. The paeoniflorin in peony extracts was not destroyed by the treatment at 6$0^{\circ}C$ and 8$0^{\circ}C$ for 5 hrs, but destroyed 30%, 28% and 40% of paeoniflorin by treatment at 10$0^{\circ}C$ for 5 hrs, 115$^{\circ}C$ and 121$^{\circ}C$ for 10 minutes, respectively. The paeoniflorin was continueously extracted for 4 hrs from the dry pieces of peony roots(0.5$\times$0.5$\times$0.5cm) in boiling water but destroyed gradually after 4 hrs at 10$0^{\circ}C$. Paeoniflorins in 70% ethanol extracts of peony root were not destroyed at all in the process of concentration to dry powder at 60"C on vacuum.cuum.

  • PDF

Cold Storage of Milt from Four Species of Flatfish

  • Chang Yun Jeong;Chang Young Jin;Lim Han Kyu;Lee Jong Kwan;Park Young Je
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.1
    • /
    • pp.64-74
    • /
    • 2002
  • The proper conditions for cold storage of milt in four species of flatfish were investigated. Various diluents were tested for the preservation of marbled sole, brown sole, starry flounder and olive flounder milt at $1\pm0.5^{\circ}C$ for 7 days. The most effective diluent was $1\%$ NaCl for marbled sole and Stein's extender for brown sole, starry flounder and olive flounder. After 7 days of storage in different dilution ratios (milt: diluent), marbled sole milt diluted with 1:3-10 and brown sole, starry flounder and olive flounder milt diluted 1:1-10 maintained good sperm activity index (SAI). SAI was affected by storage volume and presence of antibiotic. SAI was lower after 7 days storage in the volume of 1.5 mL than in 0.5 or 1.0 mL. SAI after 29 days storage was markedly enhanced by addition of antibiotic in marbled sole (400 ppm gentamicin, 400 ppm neomycin, 200-400 ppm streptomycin), brown sole (600 ppm gentamicin), starry flounder (1,000 ppm gentamicin) and olive flounder (200-1,000 ppm gentamicin, 200-400 ppm neomycin, 200-1,000 ppm streptomycin).

Use of Atmospheric Pressure Cold Plasma for Meat Industry

  • Lee, Juri;Lee, Cheol Woo;Yong, Hae In;Lee, Hyun Jung;Jo, Cheorun;Jung, Samooel
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.477-485
    • /
    • 2017
  • Novel, effective methods to control and prevent spoilage and contamination by pathogenic microorganisms in meat and meat products are in constant demand. Non-thermal pasteurization is an ideal method for the preservation of meat and meat products because it does not use heat during the pasteurization process. Atmospheric pressure cold plasma (APCP) is a new technology for the non-thermal pasteurization of meat and meat products. Several recent studies have shown that APCP treatment reduces the number of pathogenic microorganisms in meat and meat products. Furthermore, APCP treatment can be used to generate nitrite, which is an essential component of the curing process. Here, we introduce the effectiveness of APCP treatment as a pasteurization method and/or curing process for use in the meat and meat product processing industry.