• Title/Summary/Keyword: cold formed steel shear wall

Search Result 5, Processing Time 0.021 seconds

Nonlinear finite element modeling of steel-sheathed cold-formed steel shear walls

  • Borzoo, Shahin;Ghaderi, Seyed Rasoul Mir;Mohebi, Saeed;Rahimzadeh, Ali
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.79-89
    • /
    • 2016
  • Cold formed steel shear panel is one of the main components to bearing lateral load in low and mid-rise cold formed steel structures. This paper uses finite element analysis to evaluate the stiffness, strength and failure mode at cold formed steel shear panels whit steel sheathing and nonlinear connections that are under monotonic loading. Two finite element models based on two experimental model whit different failure modes is constructed and verified. It includes analytical studies that investigate the effects of studs and steel sheathing thickness changes, fasteners spacing at panel edges, one or two sides steel sheathing and height-width ratio of wall on the lateral load capacity. Dominant failure modes include buckling of steel sheet, local buckling in boundary studs and sheet unzipping in the bottom half of the wall.

Limiting Height Evaluation for Cold-Formed Steel Wall Panels (냉간성형강재 벽체 패널의 한계높이 산정)

  • Lee, Young ki;Miller, Thomas H.
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • This study aimed to develop experiment-based limiting heights for interior, nonload-bearing, cold-formed steelwall panels sheathed with gypsum board and subjected to uniformly distributed lateral loadings. Th e limiting heightswere evaluated by their strength (for flexure, shear, and web crippling) and deflection. Limiting heights for deflectionlimits of L/360, L/240, and L/120 (where L is the height of the wall) were developed over the range of typical designpressures.

Seismic performance of CFS shear wall systems filled with polystyrene lightweight concrete: Experimental investigation and design methodology

  • Mohammad Rezaeian Pakizeh;Hossein Parastesh;Iman Hajirasouliha;Farhang Farahbod
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.497-512
    • /
    • 2023
  • Using light weight concrete as infill material in conventional cold-formed steel (CFS) shear wall systems can considerably increase their load bearing capacity, ductility, integrity and fire resistance. The compressive strength of the filler concrete is a key factor affecting the structural behaviour of the composite wall systems, and therefore, achieving maximum compressive strength in lightweight concrete while maintaining its lightweight properties is of significant importance. In this study a new type of optimum polystyrene lightweight concrete (OPLC) with high compressive strength is developed for infill material in composite CFS shear wall systems. To study the seismic behaviour of the OPLC-filled CFS shear wall systems, two full scale wall specimens are tested under cyclic loading condition. The effects of OPLC on load-bearing capacity, failure mode, ductility, energy dissipation capacity, and stiffness degradation of the walls are investigated. It is shown that the use of OPLC as infill in CFS shear walls can considerably improve their seismic performance by: (i) preventing the premature buckling of the stud members, and (ii) changing the dominant failure mode from brittle to ductile thanks to the bond-slip behaviour between OPLC and CFS studs. It is also shown that the design equations proposed by EC8 and ACI 318-14 standards overestimate the shear force capacity of OPLC-filled CFS shear wall systems by up to 80%. This shows it is necessary to propose methods with higher efficiency to predict the capacity of these systems for practical applications.

Connection Tests for Cold-Formed Steel Wall Panels (냉간성형강 벽체패널의 연결부실험)

  • Lee, Young-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.739-746
    • /
    • 2014
  • The objective of this test series was to determine shear load per unit length which causes a unit slip in the fastener joint. The shear load is one of major factors which reflect partial composite action for cold-formed steel wall stud panels. Test method used were based on the methods presented in the 1962 AISI Specification. According to the comparison with experimental strength, it is seen that the shear loads used in nominal axial strength predictions made acceptable results.

Protocol for testing of cold-formed steel wall in regions of low-moderate seismicity

  • Shahi, Rojit;Lam, Nelson;Gad, Emad;Wilson, John
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.629-647
    • /
    • 2013
  • Loading protocols have been developed for quasi-static cyclic testing of structures and components. However, it is uncertain if protocols developed for conditions of intense ground shaking in regions of high seismicity would also be applicable to regions of low-moderate seismicity that are remote from the tectonic plate boundaries. This study presents a methodology for developing a quasi-static cyclic displacement loading protocol for experimental bracing evaluation of cold-formed steel stud shear walls. Simulations presented in the paper were based on conditions of moderate ground shaking (in Australia). The methodologies presented are generic in nature and can be applied to other regions of similar seismicity conditions (which include many parts of China, Korea, India and Malaysia). Numerous response time histories including both linear and nonlinear analyses have been generated for selected earthquake scenarios and site classes. Rain-flow cycle counting method has been used for determining the number of cycles at various ranges of normalized displacement amplitude. It is found that the number of displacement cycles of the loading protocol increases with increasing intensity of ground shaking (associated with a longer return period).