• Title/Summary/Keyword: cold (low temperature) stress

Search Result 110, Processing Time 0.027 seconds

Identification of the genes which related cold (low temperature) stress in Bombyx mori

  • Kang, Min-Uk;Choi, Kwang-Ho;Park, Kwan-Ho;Nho, Si-Kab
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.2
    • /
    • pp.102-107
    • /
    • 2016
  • Stress may be defined as any modification of environmental parameters that leads to a response by biological organisms. Stresses that affect biolpgical structures may be nonthermal, such as ultraviolet radiation, pH, or salinity, or thermal. Temperture is one of the major stresses that all living organism face. The major effects of cold(low emperature) are decrease of membrane fluidity and the stabilization of secondary structures of RNA and DNA in the cells, which may effect the efficiency of translation, transcription, and DNA replication. In this study, we focus on discovering the genes that are expressed by the cold(low temperature) stress in the silkworm. In cold(low temperature) stress test, we found 100% survive from cold stress at $0^{\circ}C$ up to 12h and $-5^{\circ}C$ up to 2h, and then, survive rate was rapidly decrease in silkworm. Thereafter two whole genes have selected by SSH(Suppression subtractive hybridization). (GenBank accession : GQ149511, GQ338156)

Establishment of Selection Method for Cold-Tolerant Individuals through Evaluating Tolerance of Evergreen Quercus spp. against Cold Stress

  • Park, DongJIn;Yong, Seong Hyeon;Choi, Myung Suk
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.4
    • /
    • pp.232-239
    • /
    • 2019
  • This study was carried out to establish an efficient selection condition for cold-tolerant individuals among evergreen Quercus spp. To select higher cold-tolerant individuals among four species of evergreen Quercus spp. (Q. acuta, Q. glauca, Q. myrsinaefoila, and Q. salicina), an-year-old seedlings of each species were exposed to low temperature in serial, and then examined for the death of cell tissue and the surface temperature was monitored. It was shown that the higher numbers of seedlings of Q. myrsinaefolia were survived than the others when those seedlings are exposed to cold stress. Thus, selection of the cold tolerant individuals was conducted on Q. myrsinaefolia seedlings. The limit low temperature condition for selecting cold-tolerant individuals was -6℃ for 24 hrs because no seedling of Q. myrsinaefolia was survived after exposed to -7℃ for 24 hours. It was shown that the leaf surface temperature of the selected individuals was higher than those of the non-selected individuals when they were exposed to cold-stress while monitoring them using thermal graphic camera. The results in this study can be used for expanding afforestation area of tree species of the warm temperate zone for preparation of climate change.

Comparative Transcriptome Analysis Reveals Differential Response of Phytohormone Biosynthesis Genes in Glumous Flowers of Cold-Tolerant and Cold-Sensitive Rice Varieties Upon Cold Stress at Booting Stage

  • Park, Myoung Ryoul;Kim, Ki-Young;Tyagi, Kuldeep;Baek, So-Hyeon;Yun, Song Joong
    • Korean Journal of Breeding Science
    • /
    • v.43 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • Low temperature stress is one of the major negative factors affecting vegetative and reproductive growth of rice. To better understand responses of rice plants to low temperature we analyzed transcriptome expression patterns in glumous flower of cold-tolerant japonica rice variety, Stejaree45, and cold-susceptible variety, HR19621-AC6 at booting stage under cold water irrigation. A total of 2,411 probes were differentially expressed by low temperature in glumous flowers of the two varieties. Some important genes involved in hormone biosynthesis showed variety-specific regulation. Expression of GA20ox3 and GA2ox, among the genes involved in GA biosynthesis, was regulated differentially in the two varieties. Among the genes involved in IAA biosynthesis, YUCCA1 and TAA1:1 showed variety-specific regulation. Among the genes involved in cytokinin biosynthsis and signaling, expression of LOG, HK1 and HK3 was significantly down-regulated only in the cold-susceptible variety. Among the genes involved in ABA biosynthesis, NSY and AAO3 were down-regulated only in the cold-tolerant variety. In general, genes involved in GA, IAA and cytokinin biosynthesis responded to cold temperature in such a way that capacity of those bioactive hormones is maintained at relatively higher levels under cold temperature in the cold-tolerant variety, which can help minimize cold stress imposed to developing reproductive organs in the cold-tolerant variety.

CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.)

  • Min, Hye Jo;Jung, Ye Jin;Kang, Bin Goo;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.250-257
    • /
    • 2016
  • Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature ($4^{\circ}C$) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.

Physiological and transcriptome analysis of acclimatory response to cold stress in marine red alga Pyropia yezoensis

  • Li-Hong Ma;Lin Tian;Yu-Qing Wang;Cong-Ying Xie;Guo-Ying Du
    • ALGAE
    • /
    • v.39 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • Red macroalga Pyropia yezoensis is a high valuable cultivated marine crop. Its acclimation to cold stress is especially important for long cultivation period across winter in coasts of warm temperate zone in East Asia. In this study, the response of P. yezoensis thalli to low temperature was analyzed on physiology and transcriptome level, to explore its acclimation mechanism to cold stress. The results showed that the practical photosynthesis activity (indicated by ΦPSII and qP) was depressed and pigment allophycocyanin content was decreased during the cold stress of 48 h. However, the Fv/Fm and non-photochemical quenching increased significantly after 24 h, and the average growth rate of thalli also rebounded from 24 to 48 h, indicating a certain extent of acclimation to cold stress. On transcriptionally, the low temperature promoted the expression of differentially expressed genes (DEGs) related to carbohydrate metabolism and energy metabolism, while genes related to photosynthetic system were depressed. The increased expression of DEGs involved in ribosomal biogenesis and lipid metabolism which could accelerate protein synthesis and enhance the degree of fatty acid unsaturation, might help P. yezoensis thallus cells to cope with cold stress. Further co-expression network analysis revealed differential expression trends along with stress time, and corresponding hub genes play important roles in the systemic acquired acclimation to cold stress. This study provides basic mechanisms of P. yezoensis acclimation to cold temperature and may aid in exploration of functional genes for genetic breeding of economic macroalgae.

Effect of Cold Stress on Carotenoids in Kale Leaves (Brassica oleracea) (저온처리가 케일(Brassica oleracea)잎 내 Carotenoid에 미치는 영향)

  • Hwang, So-Jung;Chun, Jin-Hyuk;Kim, Sun-Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.106-112
    • /
    • 2017
  • BACKGROUND: Kale (Brassica oleracea) biosynthesizes various phytochemicals including glucosinolates, flavonoids, and carotenoids. Phytochemicals of plants are influenced by light, temperature, carbon dioxide, and growing conditions. Specifically, carotenoids are affected by temperature, light, and oxygen. The aim of this study was to investigate the effect of cold stress (day/night: $25^{\circ}C/20^{\circ}C$, $20^{\circ}C/15^{\circ}C$, $15^{\circ}C/10^{\circ}C$) on carotenoids in kale leaves. METHODS AND RESULTS: Kale was grown in pots for up to 50 days after sowing (DAS) in a greenhouse. For cold acclimation experiments, kale grown in growth chambers for 3 days and was subjected to low temperature for 4 days. The conditions maintained in the growth chambers were as follows: photoperiod, 12/12 h (day/night); light, fluorescent; and relative humidity, 60%. Carotenoid (lutein, ${\alpha}-carotene$, zeaxanthin, ${\beta}-carotene$) contents were analyzed by high-performance liquid chromatography (HPLC). The total carotenoid content gradually increased during cold acclimation for 3 days. When kale was subjected to cold stress, the total carotenoid content was high at $25^{\circ}C/20^{\circ}C$ treatment, but low at $15^{\circ}C/10^{\circ}C$ treatment. The total carotenoid content of kale leaves continuously grown in greenhouse decreased from 50 to 57 DAS (1,418 and 1,160 mgkg-1 dry wt., respectively). The lutein, ${\alpha}-carotene$, and ${\beta}-carotene$ contents were very low and the zeaxanthin contents were very high at $15^{\circ}C/10^{\circ}C$ treatment. When kale was subjected to cold stress, the ratio of individual to the total carotenoid contents of kale leaves was 4553% for -carotene and 210% for zeaxanthin. CONCLUSION: The ${\beta}-carotene$ and zeaxanthin contents in kale leaves indicate their sensitiveness toward cold stress.

Effects of Cold Stress on Broiler Performance and Ascites Susceptibility

  • Ipek, A.;Sahan, U.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.5
    • /
    • pp.734-738
    • /
    • 2006
  • The present study was conducted to determine the effect of cold stress on broiler performance and ascites susceptibility. Male chicks were obtained from a commercial strain of broiler breeders. The trial was divided into two treatments (control and cold stress groups). Ascites was induced in broiler chickens in the trial by exposing the chickens to low temperature (Ta) and by supplying a pelleted diet. The two experimental treatments consisted of: 1) Control group, $33.3^{\circ}C$ the $1^{st}$ wk, $30.2^{\circ}C$ the $2^{nd}$ wk, and $27.5^{\circ}C$ the $3^{rd}$ wk. 2) Cold stress group, $29.0^{\circ}C$ the $1^{st}$ wk, $26.4^{\circ}C$ the $2^{nd}$ wk, and $23.1^{\circ}C$ the $3^{rd}$ wk. From the end of the $3^{rd}$ wk all broilers were reared to 6 wk of age at a constant temperature of $21^{\circ}C$. There was significant difference in live BW during wk 1 to 5. The control group was consistently the heaviest; however, at 6 wk of age, both groups weighed the same. Body weight gain up to 3 wk was significantly decreased by cold stress. During wk 3 and 6 the chicks in the cold stress group had greater BW gain compared with the chicks in the control group. There were significant differences in mortality due to ascites between the groups. During wk 3 and 6 the cold stress group exhibited the most ascites mortality (9.52%) when compared with the control group (1.90%). At 5 wk of age cold stress condition caused significant changes in packed cell volume (PCV), hemoglobin (Hb) and red blood cell counts (RBC). Right ventricle weight was significantly heavier in the cold stress group than the control. There were also significant differences in right ventricle/total ventricle (RV/TV) ratios at 5 wk. the right ventricle/total ventricle ratios in the cold stress group was higher (0.25) than the control group (0.20). It was concluded that, fast growth and cold temperatures are the primary triggers for ascites during commercial broiler production.

Identification and functional analysis of COLD-signaling-related genes in Panax ginseng

  • Jeongeui Hong;Hojin Ryu
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.225-231
    • /
    • 2023
  • Cold stress is one of the most vulnerable environmental stresses that affect plant growth and crop yields. With the recent advancements in genetic approaches using Arabidopsis and other model systems, genes involved in cold-stress response have been identified and the key cold signaling factors have been characterized. Exposure to low-temperature stress triggers the activation of a set of genes known as cold regulatory (COR) genes. This activation process plays a crucial role in enhancing the resistance of plants to cold and freezing stress. The inducer of the C-repeatbinding factor (CBF) expression 1-CBF module (ICE1-CBF module) is a key cold signaling pathway regulator that enhances the expression of downstream COR genes; however, this signaling module in Panax ginseng remains elusive. Here, we identified cold-signaling-related genes, PgCBF1, PgCBF3, and PgICE1 and conducted functional genomic analysis with a heterologous system. We confirmed that the overexpression of cold- PgCBF3 in the cbf1/2/3 triple Arabidopsis mutant compensated for the cold stress-induced deficiency of COR15A and salt-stress tolerance. In addition, nuclearlocalized PgICE1 has evolutionarily conserved phosphorylation sites that are modulated by brassinsteroid insensitive 2 (PgBIN2) and sucrose non-fermenting 1 (SNF1)-related protein kinase 3 (PgSnRK3), with which it physically interacted in a yeast two-hybrid assay. Overall, our data reveal that the regulators identified in our study, PgICE1 and PgCBFs, are evolutionarily conserved in the P. ginseng genome and are functionally involved in cold and abiotic stress responses.

A Study on the Catecholamine under the Room Temperature and $5^{\circ}C$ Refrigerator Environment in Rat (실온과 $5^{\circ}C$ 냉장고 환경에서 흰쥐 Catecholamine 분비에 관한 연구)

  • Hong, Seyng-Eui;Yoon, Tai-Young;Kim, Hyung-Suk
    • Journal of Preventive Medicine and Public Health
    • /
    • v.20 no.2 s.22
    • /
    • pp.215-220
    • /
    • 1987
  • Under the extreme change of the environment, animals react physiologically to adapt to the stress and secrete catecholamines. Cold exposure is a kind of the environmental stress. Author tried to determine the amount of catecholamines in rat urine as a parameter of physiological response to cold stress. Urinary catecholamine was measured by using HPLC with fluorescence detector, cation exchange column prepacked with Bio·Rex 70 and ammonium pentaborate as catecholamine eluent. The amount of dopaminc in normal state rat urine was 42.0 ng, but under the low temperature of $5^{\circ}C$, the dopamine amount was increased to 221.25 ng/5 ml. Above findings are suggesting that catecholamine secretion, especially dopamine, increases in the stressful condition such as cold exposure.

  • PDF