• Title/Summary/Keyword: coilgun

Search Result 8, Processing Time 0.033 seconds

Overlapped Electromagnetic Coilgun for Low Speed Projectiles

  • Mohamed, Hany M.;Abdalla, Mahmoud A.;Mitkees, Abdelazez;Sabery, Waheed
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.322-329
    • /
    • 2015
  • This paper presents a new overlapped coilgun configuration to launch medium weight projectiles. The proposed configuration consists of a two-stage coilgun with overlapped coil covers with spacing between them. The theoretical operation of a multi-stage coilgun is introduced, and a transient simulation was conducted for projectile motion through the launcher by using a commercial transient finite element software, ANSOFT MAXWELL. The excitation circuit design for each coilgun is reported, and the results indicate that the overlapped configuration increased the exit velocity relative to a non-overlapped configuration. Different configurations in terms of the optimum length and switching time were attempted for the proposed structure, and all of these cases exhibited an increase in the exit velocity. The exit velocity tends to increase by 27.2% relative to that of a non-overlapped coilgun of the same length.

A Study of Solenoid Shapes for a improvement in Projectile Velocity of a Coilgun (Coilgun의 발사체 속도 향상을 위한 Solenoid 형상 연구)

  • Park, Il-Hwan;Kim, Jae-Min;Seo, Kang;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.733-734
    • /
    • 2008
  • 본 논문에서는 Reluctance Type Coilgun의 발사체 속도향상을 목적으로, 기존의 원통형 Solenoid Coil 외에 세 가지 형태의 Solenoid Coil을 해석하여 Magnetic Field, Force, 에너지에 있어서, 각각의 분포를 분석하여 Coilgun의 성능을 향상시킬 수 있는 Solenoid Coil 형상을 설계하였다.

  • PDF

Parameter Study on the Design of Solenoid to Enhance the Velocity of Coilgun (Coilgun 성능향상을 위한 솔레노이드 코일 설계)

  • Jang, Jae-hwan;Kim, Jin-ho;Lee, Su-jeong
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.87-91
    • /
    • 2015
  • This paper reports the design of solenoid in a coilgun for high velocity of projectile in a coilgun system, according to diameter of coil. Coilgun using a magnetic force means a mechanism that can control the magnetic material. When momentarily supply a large current to the solenoid instantaneous magnetic field is created around the coil, the projectile is fired by receiving a magnetic force towards the center of the coil, based on the right-hand rule of Fleming. The velocity of projectile is proportional to the magnetic force generated by the electromagnetic coil. The current affects the life of the coil and the current limit exists. Therefore, the coilgun design, which does not exceed the current limit and the magnetic forces are at the maximum, is required. In this paper, whether it is possible fire looking for the optimal number of turns according to the diameter of the coil from AWG #6 to AWG #18 for the design of the solenoid coil, and comparative analysis firing rate associated with it.

A Mathematical and Physical Model for the Design of a Single Stage Coilgun (단일 스테이지 코일건 설계를 위한 수학적 및 물리적 모델)

  • Kim, Ji-Hun;Jeon, Sang-Woon;Kim, Joonyun
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.74-82
    • /
    • 2013
  • This paper deals with a single stage coilgun which is a variety of EML(ElectroMagnetic Launcher) and can be applied to launching a small satellite. We propose a mathematical and physical model in order to design a single stage coilgun and study physical characteristics related to design parameters. A proposed mathematical and physical model is verified by electromagnetic FEM software FEMM 4.2.

Optimal Design to Improve Launch Velocity of Coilgun Launching System (코일건 발사 시스템의 발사속도 향상을 위한 최적설계)

  • Park, Chang Hyung;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.131-136
    • /
    • 2018
  • Research on space development and satellites is being actively pursued. An interesting field is the study of reliable low-cost space launch vehicles. Since chemical fuel-based launching systems are expensive and take a lot of time and cost to maintain, the EML system, which is an electromagnetic force launching apparatus, is attracting attention. The EML system converts electrical energy stored in a capacitor into magnetic energy, and converts magnetic energy into mechanical kinetic energy, thereby accelerating the projectile. Although studies are actively conducted in the field, it is difficult to solve the equation because the impedance and speedance change with time and the nonlinearity is strong. Many researchers have solved this equation in a variety of methods. In this paper, the velocity analysis of the projectile was carried out by FEM (finite element method) using the commercial electromagnetic analysis program MAXWELL.

Development of the 2-stage Coilgun using Reluctance type (릴럭턴스 타입의 2단 코일건 개발)

  • Park, Il-Hwan;Kim, Dong-Woo;Ha, Eun-Young;Kang, Soo-Yeop;Baek, Hyoung-Yong;Yoon, Seung-Ho;Jeon, Eun-Young;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.250-252
    • /
    • 2007
  • 본 논문에서는 Multi-stage Electro-magnetic Launcher(EML)를 개발함에 있어, Photo Sensor Switching System을 구성하여 Reluctance type의 2-Stage Coilgun을 설계, 제작하였다. 이를 위해, 솔레노이드 코일의 최적 aspect ratio와 발사체의 size를 F.E.M. 해석을 통해 결정하였고, 탄속측정기를 제작하여 실험을 통해 각 stage의 최적 시정수를 결정하였다.

  • PDF

Improving Speed of Coil Guns (코일건의 속도향상에 관한 연구)

  • Park, Chang Hyung;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.118-123
    • /
    • 2018
  • Coil guns are known worldwide as inexpensive space launch vehicles. The principle of Fleming's right-hand rule allows the coil gun to accelerate the projectile by applying enormous voltage to the solenoid coil. This study was performed to improve the speed of the coil gun using MATLAB, a commercially available numerical program for high launching force of electromagnetic projectiles. To maximize the speed of the projectile, the largest coil of American wire gauge was used, and the number of windings in the radial and axial directions of the solenoid coil was optimized. Optimal length of the projectile was obtained by calculating the optimal aspect ratio between the axial length of the solenoid coil and the length of the projectile.

Design of Multi-Stage Coilgun Using AVR (AVR을 이용한 Multi-Stage 코일건 설계)

  • Ahn, Hyun-Mo;Park, Guk-Nam;Jang, Dae-Gyu;Yun, Young-Hwan;Kim, Tae-Woo;Lim, Jin-Woo;Lim, Chae-Young;Bae, Sang-Kil;Kim, Jeong-Il;Hahn, Sung-Chin
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2315-2316
    • /
    • 2008
  • 본 논문에서는 Multi-stage 코일건의 동작시간에 따른 성능향상 및 솔레노이드의 최적화에 대해 연구하였다. 동일한 저항값을 가진 솔레노이드에 자기차폐효과를 적용시켜 최적화된 솔레노이드 형상을 설계하였으며, 이 솔레노이드 3개를 이용해 Multi-stage 코일건을 제작하였다. 제작된 Multi-stage 코일건의 성능 향상을 위해 본 논문에서는 AVR(ATmaga128)을 이용하여 각 솔레노이드의 동작시간을 제어하고 Multi-stage 코일건의 각 동작시간에 따라 발사체의 속도가 증가한다는 것을 측정값을 통해 검증하였다.

  • PDF