• Title/Summary/Keyword: cohesive fracture

Search Result 154, Processing Time 0.026 seconds

A quasistatic crack propagation model allowing for cohesive forces and crack reversibility

  • Philip, Peter
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.31-44
    • /
    • 2009
  • While the classical theory of Griffith is the foundation of modern understanding of brittle fracture, it has a number of significant shortcomings: Griffith theory does not predict crack initiation and path and it suffers from the presence of unphysical stress singularities. In 1998, Francfort and Marigo presented an energy functional minimization method, where the crack (or its absence) as well as its path are part of the problem's solution. The energy functionals act on spaces of functions of bounded variations, where the cracks are related to the discontinuity sets of such functions. The new model presented here uses modified energy functionals to account for molecular interactions in the vicinity of crack tips, resulting in Barenblatt cohesive forces, such that the model becomes free of stress singularities. This is done in a physically consistent way using recently published concepts of Sinclair. Here, for the consistency of the model, it becomes necessary to allow for crack reversibility and to consider local minimizers of the energy functionals. The latter is achieved by introducing different time scales. The model is solved in its global as well as in its local version for a simple one-dimensional example, showing that local minimization is necessary to yield a physically reasonable result.

Analysis on Stitched Mode I Specimen Using Spring Elements

  • Tapullima, Jonathan;Sim, Hyung Woo;Kweon, Jin Hwe;Choi, Jin Ho
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.102-107
    • /
    • 2019
  • Several studies related to reinforce composites structures in the through thickness direction have been developed along the years. As follows, in this study a new reinforced process is proposed based on previous experimental results using a novel stitching process in T-joints and one-stitched specimens. It was established the need to perform more analysis under standard test methods to obtain a better understanding. FEM analysis were compared after performed mode I interlaminar fracture toughness test, using different stitching patterns to analyze the through thickness strength with reference laminates without stitching. The stitching patterns were defined in $2{\times}2$ and $3{\times}3$, where the upper and lower head of the non-continuous stitching process (I-Fiber) has proven to influence in a higher through thickness strength of the laminate. In order to design the numerical model, cohesive parameters were required to define the surface to surface bonding elements using the cohesive zone method (CZM) and simulate the crack opening behavior from the double cantilever beam (DCB) test.

The continuous-discontinuous Galerkin method applied to crack propagation

  • Forti, Tiago L.D.;Forti, Nadia C.S.;Santos, Fabio L.G.;Carnio, Marco A.
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • The discontinuous Galerkin method (DGM) has become widely used as it possesses several qualities, such as a natural ability to dealing with discontinuities. DGM has its major success related to fluid mechanics. Its major importance is the ability to deal with discontinuities and still provide high order of approximation. That is an important advantage when simulating cracking propagation. No remeshing is necessary during the propagation, since the crack path follows the interface of elements. However, DGM comes with the drawback of an increased number of degrees of freedom when compared to the classical continuous finite element method. Thus, it seems a natural approach to combine them in the same simulation obtaining the advantages of both methods. This paper proposes the application of the combined continuous-discontinuous Galerkin method (CDGM) to crack propagation. An important engineering problem is the simulation of crack propagation in concrete structures. The problem is characterized by discontinuities that evolve throughout the domain. Crack propagation is simulated using CDGM. Discontinuous elements are placed in regions with discontinuities and continuous elements elsewhere. The cohesive zone model describes the fracture process zone where softening effects are expressed by cohesive zones in the interface of elements. Two numerical examples demonstrate the capacities of CDGM. In the first example, a plain concrete beam is submitted to a three-point bending test. Numerical results are compared to experimental data from the literature. The second example deals with a full-scale ground slab, comparing the CDGM results to numerical and experimental data from the literature.

Stress field interference of hydraulic fractures in layered formation

  • Zhu, Haiyan;Zhang, Xudong;Guo, Jianchun;Xu, Yaqin;Chen, Li;Yuan, Shuhang;Wang, Yonghui;Huang, Jingya
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.645-667
    • /
    • 2015
  • Single treatment and staged treatments in vertical wells are widely applied in sandstone and mudstone thin interbedded (SMTI) reservoir to stimulate the reservoir. The keys and difficulties of stimulating this category of formations are to avoid hydraulic fracture propagating through the interface between shale and sand as well as control the fracture height. In this paper, the cohesive zone method was utilized to build the 3-dimensional fracture dynamic propagation model in shale and sand interbedded formation based on the cohesive damage element. Staged treatments and single treatment were simulated by single fracture propagation model and double fractures propagation model respectively. Study on the changes of fracture vicinity stress field during propagation is to compare and analyze the parameters which influence the interfacial induced stresses between two different fracturing methods. As a result, we can prejudge how difficult it is that the fracture propagates along its height direction. The induced stress increases as the pumping rate increasing and it changes as a parabolic function of the fluid viscosity. The optimized pump rate is $4.8m^3/min$ and fluid viscosity is $0.1Pa{\cdot}s$ to avoid the over extending of hydraulic fracture in height direction. The simulation outcomes were applied in the field to optimize the treatment parameters and the staged treatments was suggested to get a better production than single treatment.

Two-scale approaches for fracture in fluid-saturated porous media

  • de Borst, Rene;Rethore, Julien;Abellan, Marie-Angele
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.83-101
    • /
    • 2008
  • A derivation is given of two-scale models that are able to describe deformation and flow in a fluid-saturated and progressively fracturing porous medium. From the micromechanics of the flow in the cavity, identities are derived that couple the local momentum and the mass balances to the governing equations for a fluid-saturated porous medium, which are assumed to hold on the macroscopic scale. By exploiting the partition-of-unity property of the finite element shape functions, the position and direction of the fractures are independent from the underlying discretization. The finite element equations are derived for this two-scale approach and integrated over time. The resulting discrete equations are nonlinear due to the cohesive crack model and the nonlinearity of the coupling terms. A consistent linearization is given for use within a Newton-Raphson iterative procedure. Finally, examples are given to show the versatility and the efficiency of the approach.

A Meshfree method Based on the Local Partition of Unity for Cohesiv cracks (국부 단위분할 원리에 기초한 무요소법의 점성균열 모델)

  • Zi Goang-Seup;Jung Jin-Kyu;Kim Byeong-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.357-364
    • /
    • 2006
  • The meshfree method is extended by the local partition of unity method to model the cohesive cracks in two dimensional continuum The shape function of a particle whose domain of influence is completely cut by a crack is enriched by the step enrichment function. If the domain of influence contains a crack tip inside, it is enriched by the branch enrichment function without the stress singularity. It is found that this method is more accurate and converges faster than the meshless methods for LEFM cracks based on the visibility concept Several staic and dynamic examples are solved to verify the method.

  • PDF

Shear Bond Strength Between Zirconia and Porcelain (지르코니아와 포세린의 전단결합강도)

  • Kim, Sa-Hak
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Purpose: To examine the shear bond strengths of zirconia and veneering ceramic according to their surface processing. Methods: The test samples were divided into three groups: one without zirconia surface processing, one sandblasted, and one sandblasted then 3% etched. Then veneering ceramic was fired on all test samples, and their shear bond strengths were measured. Results: The test samples of the control group (Z1) showed the lowest shear bond strengths of $21.82{\pm}1.02$ MPa. The shear bond strengths of Z2 and Z3 ($28.25{\pm}0.72$ and $26.23{\pm}0.82$ MPa, respectively) were relatively higher than those of the control group. The fracture surface of the control group showed adhesive fractures while the test groups had relatively large numbers of cohesive fractures. Conclusion: The shear bond strength was high in the test groups with surface processing while the fracture surfaces showed compound fractures of adhesive and cohesive fractures.

Fracture Behavior of UHPC Reinforced with Hybrid Steel Fibers (하이브리드 강섬유로 보강된 UHPC의 파괴거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.223-234
    • /
    • 2016
  • In this study, direct tension test for hybrid steel fiber reinforced ultra-high performance concrete (UHPC) containing two different steel fibers with a length of 16 and 19 mm was performed to investigate the fracture behavior of UHPC. Test results showed that crack strength and tensile strength, and fracture energy increased with increasing the fiber volume ratio. Based on the test results, the peak cohesive stress at the crack tip, tensile strength, and fracture energy depending on the fiber volume ratio were proposed. The proposed tensile strength of UHPC was suggested as a function of the fiber volume ratio and compressive strength. The peak cohesive stress at the crack tip and fracture energy were also proposed as a function of the tensile strength. The predicted values were relatively agree well with the test results. Thus, the proposed equations is expected to be applicable to UHPC with a compressive strength of 140~170 MPa and a fiber volume ratio of less than 2%.

Experimental and numerical analysis of mixed mode I/III fracture of sandstone using three-point bending specimens

  • Li, Yifan;Dong, Shiming;Pavier, Martyn J.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.725-736
    • /
    • 2020
  • In this work the mixed mode I/III fracture of sandstone has been studied experimentally and numerically. The experimental work used three-point bending specimens containing pre-existing cracks, machined at various inclination angles so as to achieve varying proportions of mode I to mode III loading. Dimensionless stress intensity factors were calculated using the extended finite element method (XFEM) for and compared with existing results from literature calculated using conventional finite element method. A total of 28 samples were used to conduct the fracture test with 4 specimens for each of 7 different inclination angles. The fracture load and the geometry of the fracture surface were obtained for different mode mixities. Prediction of the fracture loads and the geometry of the fracture surface were made using XFEM coupled with a cohesive zone model (CZM) and showed a good comparison with the experimental results.

Progressive Failure Analysis of Adhesive Joints of Filament-Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 접착 체결부에 대한 점진적 파손 해석)

  • Kim, Junhwan;Shin, Kwangbok;Hwang, Taekyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1265-1272
    • /
    • 2014
  • This study performed the progressive failure analysis of adhesive joints of a composite pressure vessel with a separated dome by using a cohesive zone model. In order to determine the input parameters of a cohesive element for numerical analysis, the interlaminar fracture toughness values in modes I and II and in the mixed mode for the adhesive joints of the composite pressure vessel were obtained by a material test. All specimens were manufactured by the filament winding method. A mechanical test was performed on adhesively bonded double-lap joints to determine the shear strength of the adhesive joints and verify the reliability of the cohesive zone model for progressive failure analysis. The test results showed that the shear strength of the adhesive joints was 32MPa; the experiment and analysis results had an error of about 4.4%, indicating their relatively good agreement. The progressive failure analysis of a composite pressure vessel with an adhesively bonded dome performed using the cohesive zone model showed that only 5.8% of the total adhesive length was debonded and this debonded length did not affect the structural integrity of the vessel.