• Title/Summary/Keyword: cohesion-less soil

Search Result 33, Processing Time 0.015 seconds

Improvement Effect and Field Application of Dynamic Replacement Using Crushed Rock (암버력 매립층의 동치환공법 현장 적용성 및 개량효과에 관한 연구)

  • Lee, In-Hwan;Lee, Chul-Hee;Shin, Eun Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.1-13
    • /
    • 2019
  • The purpose of this study is to examine the effect of soft ground improvement by dynamic replacement with utilizing crushed rock. In order to understand the ground improvement effect when applying dynamic replacement method with crushed rock, the laboratory test and field test were performed. The internal friction angle and apparent cohesion were derived through direct shear test. The dynamic replacement characteristics were identified by analyzing the weight, drop, and number of blows needed for dynamic replacement. Through the field plate bearing test and density test, the bearing capacity and settlement of the improved ground were measured, and the numerical analysis were conducted to analyze the behavior of the improved ground. In this study, it proposes modified soil experimental coefficient(CDR) to 0.3~0.5 in the dynamic replacement method with crushed rock. Also when applying the dynamic replacement method using crushed rock, the particle size range is less than 100 mm, D90 is less than 80 mm and D15 is more than 30 mm.

Effects of bed material on scouring under high-velocity flow conditions (고유속 흐름에서 하상재료에 따른 세굴 영향 연구)

  • Kim, Gwang Soo;Jung, Dong Gyu;Kim, Young Do;Park, Yong Sung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.133-139
    • /
    • 2019
  • In this study, the degree of scouring according to the bed material according to the flow rate and the relationship between the flow velocity and the bed scouring were investigated in order to examine the operability of the revetment and embankment. The materials used in the experiment were sand and loess as materials used in the embankment. We measured the scouring of the material according to the change of the flow velocity by using the indoor high flow velocity experiment device and verified the flow rate. In this way, The purpose of this study was to compare and analyze changes in material before and after scouring, and compare basal scouring evaluation by bed material with high flow velocity. In case of sand, the cohesive force is very weak, so more than 40% of the material is lost even at less than 1.0 m/s. In the case of loess, less than 6% of the bed material is lost at more than 2 m/s. The reason why the material was lost was that the cohesion was so strong that the material was dried after the compaction and cracked. As a result, the material was lost from the part where the dry crack occurred. In this study, the composition and loss of bed materials were evaluated.

A Study on Dynamic Analyses of Cut and Cover Tunnel during Earthquakes (개착터널에 대한 지진 시 동적수치해석에 관한 연구)

  • Park, Sung-Sik;Moon, Hong-Duk;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.237-250
    • /
    • 2015
  • Underground structures such as a tunnel have been considered as safer than structures on the ground during earthquake. However, severe damages of underground structures occurred at subway tunnel during 1995 Kobe Earthquake and such damages are gradually increased. In this study, a dynamic behavior of a cut and cover tunnel surrounded by weathered soils is investigated using Mohr-Coulomb Model. Parametric study was carried out for boundary conditions, tensile strength, and earthquake magnitudes. The results of numerical analyses in terms of ground deformations and stresses acting on the lining were quite dependent on the side boundary condition (free or fix conditions) and tensile strength of surrounding soils. The ground was deformed upward at the end of earthquake when the side boundary condition was fixed, whereas residual deformations were not predicted when it was free. When the tensile strength of a soil was set to the same as its cohesion, residual deformation was less than 1cm, regardless of side boundary conditions or input accelerations. In addition to that, stress conditions at the maximum deformation and end of earthquake were within an allowable range and considered as safe. Proper boundary conditions and material properties such as tensile strength are quite important because they may significantly impact on the results of dynamic analyses.