• Title/Summary/Keyword: cohesion of soil

Search Result 250, Processing Time 0.019 seconds

Deformation analysis of shallow tunneling with unconsolidated soil using nonlinear numerical modeling (비선형 수치모델링을 이용한 미고결 지반 저토피 터널의 변형해석)

  • Lee, Jae-Ho;Kim, Young-Su;Yoo, Ji-Hyeung;Jeong, Yun-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.105-116
    • /
    • 2010
  • The estimation of surface settlement, ground behavior and tunnel displacement are the main factors in urban tunnel design with shallow depth and unconsolidated soil. On deformation analysis of shallow tunnel, it is important to identify possible deformation mechanism of shear bands developing from tunnel shoulder to the ground surface. This paper investigated the effects of key design parameter affecting deformation behavior by numerical analysis using nonlinear model incorporating the reduction of shear stiffness and strength parameters with the increment of the maximum shear strain after the initiation of plastic yielding. Numerical parametric studies are carried out to consider the reduction of shear stiffness and strength parameters, horizontal stress ratio, cohesion and shotcrete thickness.

A Characteristics of Shear Strength and Deformation of Decomposed Granite Soil (화강토의 전단강도 및 변형특성)

  • 박병기;이강일
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.177-198
    • /
    • 1997
  • Since decomposed granite soil shows various characteristics of shear behavior dependent on initial conditions such as weathering degree and grain breakage, it is nacessary to invert ligate stress -strain relationship and changes of shear characteristics for different initial conditions. Associated with abovefnentioned view, direct shear tests, and triaxial compression tutsts(Ef, CD) were carried out in this study for undisturbed and disturbed compacted weathered granite samples obtained from 4 construction work sites with the various weathering degree and components of parent rocks. The deformation behavior of undisturbed samples under small confining stress shows hardening to softening, which is similar to that of over nsolidated clay whereas disturbed weathered granite soils do hardeningfonstant regardless of weathering degree, which is also similar to sedimentary clay. Conventional direct shear-tests for undisturbed samples show a tendency to overestimate cohesion. It is possidle to approximate stress ratio(q/p') and volumetric increment ratio(dv/ds) in the triaxital compression tests by an equation, ($dv/d\varepsilon,=\alpha(M-\eta))$ irrespective of moisture content, weathering degree and disturbance.

  • PDF

Shear Strength Characteristics of Unconsolidated-Undrained Reinforced Decomposed Granite Soil under Monotonic and Cyclic Loading (정.동적 하중에 의한 비압밀비배수 보강화강풍화토의 전단강도 특성)

  • Cho, Yong-Sung;Koo, Ho-Bon;Park, Inn-Joon;Kim, You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.13-21
    • /
    • 2006
  • When enforced earth is used for the retain wall and four walls, the most important thing would be how to maximize the land utilization. Accordingly, in case of enforced earth, we pile up the minimal height of earth ($20{\sim}50\;cm$) and harden the earth using a static dynamic hardening machine. In this paper, we tried to analyze and compare the stress transformation characteristics of reinforced weathered granite soil with geosynthetics when repetitive load is added to the enforced earth structure and when static load is added. The result is that the cohesion component of the strength increased greatly and the friction component decreased slightly.

Effect of Relative Density and Fines Content on Pullout Resistance Performance of Drilled Shafts (상대밀도와 세립분 함유율이 현장타설말뚝의 인발저항 성능에 미치는 영향에 관한 연구)

  • You, Seung-Kyong;Hong, Gigwon;Jeong, Minwoo;Shin, Heesoo;Lee, Kwang-Wu;Ryu, Jeongho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.37-47
    • /
    • 2018
  • This paper described a results of direct shear test and pullout test by using soil supported by drilled shafts in order to evaluate the effect of relative density and fines content on pullout resistance performance of drilled shafts. The result of direct shear test showed that the variation characteristics of internal friction angle and cohesion could be confirmed quantitatively. The result of pullout test also showed that the effect of relative density and fines content on pullout resistance performance of drilled shafts was confirmed. That is, the contribution of the internal friction angle and cohesion of soils on the pullout resistance performance of drilled shafts was found to vary, when the fines content was about 13% based on results direct shear test and pullout test. Therefore, at design of drilled shafts, the effect of skin friction resistance should be considered on the influence factor of strength parameters ($c-{\phi}$) according to the fines content of soil.

Comparison of Sediment Disaster Risk Depending on Bedrock using LSMAP (LSMAP을 활용한 기반암별 토사재해 위험도 비교)

  • Choi, Won-il;Choi, Eun-hwa;Jeon, Seong-kon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.51-62
    • /
    • 2017
  • For the purpose of the study, of the 76 areas subject to preliminary concentrated management on sediment disaster in the downtown area, 9 areas were selected as research areas. They were classified into three stratified rock areas (Gyeongsan City, Goheung-gun and Daegu Metropolitan City), three igneous rock areas (Daejeon City, Sejong Special Self-Governing City and Wonju City) and three metamorphic rock areas (Namyangju City, Uiwang City and Inje District) according to the characteristics of the bedrock in the research areas. As for the 9 areas, analyses were conducted based on tests required to calculate soil characteristics, a predictive model for root adhesive power, loading of trees and on-the-spot research. As for a rainfall scenario (rainfall intensity), the probability of rainfall was applied as offered by APEC Climate Center (APCC) in Busan. As for the prediction of landslide risks in the 9 areas, TRIGRS and LSMAP were applied. As a result of TRIGRIS prediction, the risk rate was recorded 30.45% in stratified rock areas, 41.03% in igneous rock areas and 45.04% in metamorphic rock areas on average. As a result of LSMAP prediction based on root cohesion and the weight of trees according to crown density, it turned out to a 1.34% risk rate in the stratified rock areas, 2.76% in the igneous rock areas and 1.64% in the metamorphic rock areas. Analysis through LSMAP was considered to be relatively local predictive rather than analysis using TRIGRS.

Eco-Friendly Backfill Materials with Bottom Ash (바톰애시를 이용한 환경친화적 뒤채움재)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1385-1390
    • /
    • 2012
  • Couple of laboratory for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. The optimum mix ratios for 4 cases with flowability and unconfined compressive strength were determined. The optimim mixing ratios were 25 to 45% of insitu soil, 30% of bottom ash, 10 to 20% of fly ash, 0 to 3% of crumb rubber, 3% of cement and 22% of water. Each mixture was satisfied the standard specification, minimum 20cm of flowability and 127 kPa of unconfined compressive strength. Two different curling methods, at room temperature and wet condition, were adopted. The average secant modulus(E50) was 0.07 to 0.08 * $q_u$. The compressive strength at wet condition showed 10% larger than at room temperature. The range of internal friction angle and cohesion for mixtures were 36.5o to 46.6o and 49.1 to 180 kPa, respectively. The mixture with crumb rubber(case 4) showed higher choesion and lower internal friction angle than the others. The pH of all the mixtures was over 12 which is strong alkine.

Engineering Application of Direct Shear Box Test for Slope Stability Problem (사면 안정 문제에 대한 직접 전단 시험의 공학적 적용)

  • Ikejiri, Katsutoshi;Shibuya, Satoru;Jung, Min-Su;Chae, Jong-Gil
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.65-73
    • /
    • 2008
  • In the current practice for slope stability problem in Japan, the shear strength, $\tau$, mobilized along the failure surface is usually estimated based on an empirical approximation in which the cohesion, c, is assumed to be equal to the soil thickness above the supposed slip surface, d(m). This approximation is advantageous in that the result of stability analysis is not influenced by the designers in charge. However, since the methodology has little theoretical background, the cohesion may often be grossly overestimated, and conversely the angle of shear resistance, $\phi$, is significantly underestimated, when the soil thickness above the supposed slip surface is quite large. In this paper, a case record of natural slope failure that took place in Hyogo Prefecture in 2007, is described in detail for the case in which the shear strength along the collapsed surface was carefully examined in a series of direct shear box (DSB) tests by considering the effects of in-situ shear stress along the slip surface. It is demonstrated that the factor of safety agrees with that of in-situ conditions when the shear strength from this kind of DSB test was employed for the back-analysis of the slope failure.

An Experimental Study on the Evaluation of Shear Strength of Weathered Soil Containing Coarse Particles (굵은 입자가 포함된 풍화토의 전단강도 평가에 대한 실험연구)

  • Joon-Seok Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.169-176
    • /
    • 2024
  • Purpose: In this paper, an experimental study was conducted to analyze the difference in shear strength caused by the problem of excluding coarse particles due to the size of the test specimen in the direct shear test. Method: A large-scale direct shear test was conducted on three weathered soils containing coarse aggregates with a maximum diameter of 50mm. In addition, a small-scale direct shear test was performed using a sample with a maximum diameter of 5 mm, excluding coarse aggregates. Result: In the case of the small-scale direct shear test, compared to the results of the large-scale direct shear test containing large particles, the internal friction angle was about 2.3% smaller, and there was no significant difference. In terms of cohesion, compared to the large-scale direct shear test, the small-scale direct shear test derived about 80.3% smaller value, showing a relatively large difference. Conclusion: In the large-scale direct shear test, it was analyzed that the coarse particles had a greater impact on the cohesion than the internal friction angle. Therefore, granite weathered clay containing coarse particles is judged to have the same shear strength as the cohesive force that is not affected by vertical stress. In this study, it was analyzed that the small-scale direct shear test, which excludes the coarse particles that are commonly used, provides results on the safety side by excluding the effect of coarse particles.

Study of Ground Reinforced Effect using the Porous Geocell (다공성 지오셀을 이용한 지반 보강효과에 관한 연구)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Kim, Young-Jin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • The laboratory tests and field plate load test were carried out to evaluate the reinforcement effect of geocell for road construction. The geocell-reinforced subgrade shows the increment of cohesion and friction angle with comparison of non-reinforced subgrade. In addition, the field plate load test was performed on the geocell-reinforced subgrade to estimate the bearing capacity of soil. The direct shear test was conducted with utilizing a large-scale shear box to evaluate the internal soil friction angle with geocell reinforcement. The number of cells in the geocell system is varied to investigate the effect of soil reinforcement. The theoretical bearing capacity of subgrade soil with and without geocell reinforcement was estimated by using the soil internal friction angle. The field plate load tests were also conducted to estimate the bearing capacity with geocell reinforcement. It is found out that the bearing capacity of geocell-reinforced subgrade gives 2 times higher value than that of unreinforced subgrade soil. The settlement and the distribution of deformation were also estimated by using the finite element method. The magnitude of settlements on the geocell-reinforced subgrade and unreinforced subgrade are 6.8cm and 1.2cm, respectively.

  • PDF

Engineering Characteristics of Soil Slopes Dependent on Geology - Hwangryeong Mt. District, Busan - (지질에 따른 토층사면의 토질공학적 특성 -부산 황령산지역-)

  • Kim Kyeong-Su;Lee Moon-Se;Cho Yong-Chan;Chae Byung-Gon;Lee Choon-Oh
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.487-498
    • /
    • 2004
  • There is an increasing trend of construction works in mountainous areas by the urban development in Busan that is mainly composed of mountains. The study area, Hwangryeong Mt., is one of developing sites in the urban area, too. Landslides and cut-slope failures that occur large damages of human beings and the properties are influenced by soil characteristics as well as rock properties. This study analyzed geotechnical characteristics of soil dependent on geology at Hwangryeong Mt. where a large slope failure had been occurred in 1999. Geology of the study area is composed of the Cretaceous sedimentary rocks and volcanic rocks. Soil layer of the slopes can be grouped into sand mixed with clay and silt. The cohesion is plotted between $0.001\;and\;0.066kg/cm^2$. The friction angles are distributed in the ranges between $32^{\circ}\;and\;39^{\circ}$, meaning soil bearing a high friction angle. The permeability coefficients are plotted between $2.34\times10^{-4}cm/sec\;and\;2.58\times10^{-2}cm/sec$, indicating fine sand and loose silt with a medium grade of permeability. The sedimentary rocks area shows relatively higher permeability coefficients than those volcanic rocks area.