• Title/Summary/Keyword: cohesion of soil

Search Result 250, Processing Time 0.028 seconds

A scientific approach to estimate the safe depth of burial of submarine pipelines against wave forces for different marine soil conditions

  • Neelamani, S.;Al-Banaa, K.
    • Ocean Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.9-34
    • /
    • 2013
  • Submarine pipelines encounter significant wave forces in shallow coastal waters due to the action of waves. In order to reduce such forces (also to protect the pipe against anchors and dropped objects) they are buried below the seabed. The wave force variation due to burial depends on the engineering characteristics of the sub soil like hydraulic conductivity and porosity, apart from the design environmental conditions. For a given wave condition, in certain type of soil, the wave force can reduce drastically with increased burial and in certain other type of soil, it may not. It is hence essential to understand how the wave forces vary in soils of different hydraulic conductivity. Based on physical model study, the wave forces on the buried pipeline model is assessed for a wide range of wave conditions, for different burial depths and for four types of cohesion-less soils, covering hydraulic conductivity in the range of 0.286 to 1.84 mm/s. It is found that for all the four soil types, the horizontal wave force reduces with increase in depth of burial, whereas the vertical force is high for half buried condition. Among the soils, well graded one is better for half buried case, since the least vertical force is experienced for this situation. It is found that uniformly graded and low hydraulic conductivity soil attracts the maximum vertical force for half buried case. A case study analysis is carried out and is reported. The results of this study are useful for submarine buried pipeline design.

Slope Stability Analysis by Optimization Technique Considering Unsaturated Characteristics of Weathered Granite Soil (화강풍화토 지반의 불포화 특성을 고려한 최적화기법에 의한 사면안정해석 방법)

  • 이승래;이성진;변위용;장범수
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.123-133
    • /
    • 2001
  • Since most of soil slopes are in an unsaturated state, it is necessary to consider the unsaturated characteristics of soil slopes, in order to obtain more reasonable results. Therefore in this study we supplemented a slope stability analysis program to consider them, based on the concept of limit equilibrium. We also applied an optimization technique to search for a failure surface. Besides, we carried out experiments to obtain the unsaturated soil properties required in the analysis with weathered granite soils. We formulated a nonlinear apparent cohesion relationship with the matrix suction to be able to apply the unsaturated shear strength characteristics to the stability analysis. In addition, we intended to obtain more accurate soil water characteristic curves(SWCC) by measuring the change in volume of the specimen in the SWCC tests. As a result, we could appropriately assess the change of the safety factor according to the rainfall intensity and duration, by considering the variation of suction, permeability, and shear strength caused by the infiltration of rainfall into slopes.

  • PDF

Slope Stability Evaluation System of Sanitary Landfill on Soft Ground and Its Reliability (연약지반상 위생매립지 안정성 평가에 대한 문제점 분석과 개선방향)

  • 우동찬;송좌빈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1997.03a
    • /
    • pp.161-168
    • /
    • 1997
  • The purpose of this study is to evaluate the possibility of normalization of the distibutions of soil parameters taken from soft ground and the reliability of the safety factors of specific objects on it, including sanitary landfill. Through this study it is found that distributions of soil parameters could be adjusted to appropriate normal distributions as possibility density functions(PDF), and that especially the group of initial cohesions and the coresponding safety factors has a perfect linear correlation. According to those results the PDF to initial cohesion as possibility parameter can not only be tmsformed to the PDF to safety factor but also, conseqently, the reliability of the safety factor(SF) simply based on the mean value of soil parameter(Co) can be calculated or easily picked up from the standrad normal distribution table. It is therefore concluded that even though calculated values of safety factors are over any standard requirements some possibility of risk both to the objects and natural soft ground could be still existing, and also a new standard value for this slope stability control system should be derived just by adjusting old one according to the magnitude of risk possibility.

  • PDF

A Study on Side Slope Determination of Earth Dam (EARTH DAM의 비탈면 기울기 결정에 관한 연구)

  • 이원희;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.23 no.1
    • /
    • pp.86-102
    • /
    • 1981
  • The soil test data of 28 earth dams, scheduled to be constructed in Kore3, were selected for this study. The safety factors of their side slops were computed using Fellenius' "slice Method" by computer. The results summarized in this study are as follows; 1. Dam sections can be easily determined by fig.10 without a time consuming trial and error calculations of assumed sections. 2. For the economical design of earth dam sections, it was found that more cohesive soil was suitable for lower dams(dam height less than 25m) and soils with a higher friction angle was better for higher dams 3. In the case that used soil materials have the same Internal friction angle, side slope increase was almost same. 4. The relationship between side slope and friction angle was found as log.S=a tan ø+b (Fig. 7) 5. The relationship between side slope and cohesion (c) was also found as log. S=a c+b (Fig. 8) 6. The change of safety factors due to the change of central core materials was very little (Table-2) 7. The decrease of safety factors according to the unit weight increase of embankment materials was negligible. 8. In general the relationship between the wet unit weight and the saturated unit weight was r sat = (rt)$^2$+0. 140. This study will contribute to the determination of economic and safe planning and designing of earth dams, embankments and cutting side slopes.

  • PDF

Stability charts and reinforcement with piles in 3D nonhomogeneous and anisotropic soil slope

  • Xu, Jingshu;Li, Yongxin;Yang, Xiaoli
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.71-81
    • /
    • 2018
  • Soils are mostly nonhomogeneous and anisotropic in nature. In this study, nonhomogeneity and anisotropy of soil are taken into consideration by assuming that the cohesion increases with depth linearly and also varies with respect to direction at a particular point. A three-dimensional rotational failure mechanism is adopted, and then a three-dimensional stability analysis of slope is carried out with the failure surface in the shape of a curvilinear cone in virtue of the limit analysis method. A quasistatic approach is used to develop stability charts in nonhomogeneous and anisotropic soils. One can easily read the safety factors from the charts without the need for iterative procedures for safety factors calculation. The charts are of practical importance to prevent a plane failure in excavation slope whether it is physically constrained or not. Then the most suitable location of piles within the reinforced slope in nonhomogeneous and anisotropic soils is explored, as well as the interactions of nonhomogeneous and anisotropic coefficients on pile reinforcement effects. The results indicate that piles are more effective when they are located between the middle and the crest of the slope, and the nonhomogeneous coefficient as well as the anisotropic coefficient will not only influence the most suitable location for piles but also affect the calculated safety factor of existing reinforced slope. In addition, the two coefficients will interact with each other on the effect on slope reinforcement.

Partial safety factors for retaining walls and slopes: A reliability based approach

  • GuhaRay, Anasua;Baidya, Dilip Kumar
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.99-115
    • /
    • 2014
  • Uncertainties in design variables and design equations have a significant impact on the safety of geotechnical structures like retaining walls and slopes. This paper presents a possible framework for obtaining the partial safety factors based on reliability approach for different random variables affecting the stability of a reinforced concrete cantilever retaining wall and a slope under static loading conditions. Reliability analysis is carried out by Mean First Order Second Moment Method, Point Estimate Method, Monte Carlo Simulation and Response Surface Methodology. A target reliability index ${\beta}$ = 3 is set and partial safety factors for each random variable are calculated based on different coefficient of variations of the random variables. The study shows that although deterministic analysis reveals a safety factor greater than 1.5 which is considered to be safe in conventional approach, reliability analysis indicates quite high failure probability due to variation of soil properties. The results also reveal that a higher factor of safety is required for internal friction angle ${\varphi}$, while almost negligible values of safety factors are required for soil unit weight ${\gamma}$ in case of cantilever retaining wall and soil unit weight ${\gamma}$ and cohesion c in case of slope. Importance of partial safety factors is shown by analyzing two simple geotechnical structures. However, it can be applied for any complex system to achieve economization.

Lateral Earth Pressures Acting on Piles in Cohesion less Soil (모래지반(地盤)속의 말뚝에 작용(作用)하는 측방토압(側方土壓))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.63-69
    • /
    • 1983
  • A theoretical equation is presented to estimate the lateral earth pressures acting on piles in a row in cohesionless soil. Then, a series of model tests are carried out for various kinds of pile diameters and pile intervals, followed by very good agreements between the experimental and theoretical values of the lateral earth pressures on piles. The experimental results prove the validity of an assumption on the plastic condition of soil around piles set up in the theoretical derivation. And also the significance of the theoretical values by the presented theoretical equation is clarified.

  • PDF

Investigation of shear behavior of soil-concrete interface

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi;Masoumi, Alireza
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • The shear behavior of soil-concrete interface is mainly affected by the surface roughness of the two contact surfaces. The present research emphasizes on investigating the effect of roughness of soil-concrete interface on the interface shear behavior in two-layered laboratory testing samples. In these specially prepared samples, clay silt layer with density of $2027kg/m^3$ was selected to be in contact a concrete layer for simplifying the laboratory testing. The particle size testing and direct shear tests are performed to determine the appropriate particles sizes and their shear strength properties such as cohesion and friction angle. Then, the surface undulations in form of teeth are provided on the surfaces of both concrete and soil layers in different testing carried out on these mixed specimens. The soil-concrete samples are prepared in form of cubes of 10*10*30 cm. in dimension. The undulations (inter-surface roughness) are provided in form of one tooth or two teeth having angles $15^{\circ}$ and $30^{\circ}$, respectively. Several direct shear tests were carried out under four different normal loads of 80, 150, 300 and 500 KPa with a constant displacement rate of 0.02 mm/min. These testing results show that the shear failure mechanism is affected by the tooth number, the roughness angle and the applied normal stress on the sample. The teeth are sheared from the base under low normal load while the oblique cracks may lead to a failure under a higher normal load. As the number of teeth increase the shear strength of the sample also increases. When the tooth roughness angle increases a wider portion of the tooth base will be failed which means the shear strength of the sample is increased.

Physical and numerical modelling of the inherent variability of shear strength in soil mechanics

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghoreishi, Malahat;Taleb, Ali
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.31-45
    • /
    • 2019
  • In this study the spatial variability of soils is substantiated physically and numerically by using random field theory. Heterogeneous samples are fabricated by combining nine homogeneous soil clusters that are assumed to be elements of an adopted random field. Homogeneous soils are prepared by mixing different percentages of kaolin and bentonite at water contents equivalent to their respective liquid limits. Comprehensive characteristic laboratory tests were carried out before embarking on direct shear experiments to deduce the basic correlations and properties of nine homogeneous soil clusters that serve to reconstitute the heterogeneous samples. The tests consist of Atterberg limits, and Oedometric and unconfined compression tests. The undrained shear strength of nine soil clusters were measured by the unconfined compression test data, and then correlations were made between the water content and the strength and stiffness of soil samples with different consistency limits. The direct shear strength of heterogeneous samples of different stochastic properties was then evaluated by physical and numerical modelling using FISH code programming in finite difference software of $FLAC^{3D}$. The results of the experimental and stochastic numerical analyses were then compared. The deviation of numerical simulations from direct shear load-displacement profiles taken from different sources were discussed, potential sources of error was introduced and elaborated. This study was primarily to explain the mathematical and physical procedures of sample preparation in stochastic soil mechanics. It can be extended to different problems and applications in geotechnical engineering discipline to take in to account the variability of strength and deformation parameters.

Analysis of the Effect of Tree Roots on Soil Reinforcement Considering Its Spatial Distribution (뿌리의 공간분포를 고려한 수목 뿌리의 토양보강 효과에 대한 분석)

  • Kim, Dongyeob;Lee, Sang Ho;Im, Sangjun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.4
    • /
    • pp.41-54
    • /
    • 2011
  • Tree roots can enhance soil shear strength and slope stability. However, there has been a limited study about root reinforcement of major tree species in Korea because of some experimental difficulties. Thus, this study was conducted to analyze the performance of Japanese larch (Larix kaempferi) and Korean pine (Pinus koraiensis) which are two common plantation species in Korea. Profile wall method was used to measure the spatial distribution of root system and its diameter within 15 soil walls of Japanese larch stand and 13 soil walls of Korean pine stand in Taehwa University Forest, Seoul National University, Korea. Root tensile properties of each species were assessed in the laboratory, and root reinforcements were estimated by Wu model. The study observed that the number and cross-sectional area (CSA) of root in both species could tend to decrease with soil depth. Especially, CSA were well-fitted to exponential functions of soil depth. Mean root area ratios (RAR) were 0.03% and 0.10% for Japanese larch and Korean pine, respectively. Estimated root reinforcement from Wu model were, on the average, 4.04 kPa for Japanese larch and 12.26 kPa for Korean pine. Overall, it was concluded that root reinforcement increased the factor of safety (Fs) of slope for small-scale landslide as the result of two-dimensional (2-D) infinite slope stability analysis considering vegetation effects.