• Title/Summary/Keyword: coherent risk measure

Search Result 7, Processing Time 0.028 seconds

ON RELATION AMONG COHERENT, DISTORTION AND SPECTRAL RISK MEASURES

  • Kim, Ju-Hong
    • The Pure and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.121-131
    • /
    • 2009
  • In this paper we examine the relation among law-invariant coherent risk measures with the Fatou property, distortion risk measures and spectral risk measures, and give a new proof of the relation among them. It is also shown that the spectral risk measure satisfies the monotonicity with respect to stochastic dominance and the comonotonic additivity.

  • PDF

OPTIMAL PARTIAL HEDGING USING COHERENT MEASURE OF RISK

  • Kim, Ju-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.987-1000
    • /
    • 2011
  • We show how the dynamic optimization problem with the capital constraint can be reduced to the problem to find an optimal modified claim $\tilde{\psi}H$ where $\tilde{\psi}$ is a randomized test in the static problem. Coherent risk measure is used as risk measure in the $L^{\infty}$ random variable spaces. The paper is written in expository style to some degree. We use an average risk of measure(AVaR), which is a special coherent risk measure, to see how to hedge the modified claim in a complete market model.

COHERENT AND CONVEX HEDGING ON ORLICZ HEARTS IN INCOMPLETE MARKETS

  • Kim, Ju-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.413-428
    • /
    • 2012
  • Every contingent claim is unable to be replicated in the incomplete markets. Shortfall risk is considered with some risk exposure. We show how the dynamic optimization problem with the capital constraint can be reduced to the problem to find an optimal modified claim $\tilde{\psi}H$ where$\tilde{\psi}H$ is a randomized test in the static problem. Convex and coherent risk measures defined in the Orlicz hearts spaces, $M^{\Phi}$, are used as risk measure. It can be shown that we have the same results as in [21, 22] even though convex and coherent risk measures defined in the Orlicz hearts spaces, $M^{\Phi}$, are used. In this paper, we use Fenchel duality Theorem in the literature to deduce necessary and sufficient optimality conditions for the static optimization problem using convex duality methods.

THE MAXIMAL PRIOR SET IN THE REPRESENTATION OF COHERENT RISK MEASURE

  • Kim, Ju Hong
    • The Pure and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.377-383
    • /
    • 2016
  • The set of priors in the representation of coherent risk measure is expressed in terms of quantile function and increasing concave function. We show that the set of prior, $\mathcal{Q}_c$ in (1.2) is equal to the set of $\mathcal{Q}_m$ in (1.6), as maximal representing set $\mathcal{Q}_{max}$ defined in (1.7).

DYNAMIC RISK MEASURES AND G-EXPECTATION

  • Kim, Ju Hong
    • The Pure and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.287-298
    • /
    • 2013
  • A standard deviation has been a starting point for a mathematical definition of risk. As a remedy for drawbacks such as subadditivity property discouraging the diversification, coherent and convex risk measures are introduced in an axiomatic approach. Choquet expectation and g-expectations, which generalize mathematical expectations, are widely used in hedging and pricing contingent claims in incomplete markets. The each risk measure or expectation give rise to its own pricing rules. In this paper we investigate relationships among dynamic risk measures, Choquet expectation and dynamic g-expectations in the framework of the continuous-time asset pricing.

VALUATION FUNCTIONALS AND STATIC NO ARBITRAGE OPTION PRICING FORMULAS

  • Jeon, In-Tae;Park, Cheol-Ung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.249-273
    • /
    • 2010
  • Often in practice, the implied volatility of an option is calculated to find the option price tomorrow or the prices of, nearby' options. To show that one does not need to adhere to the Black- Scholes formula in this scheme, Figlewski has provided a new pricing formula and has shown that his, alternating passive model' performs as well as the Black-Scholes formula [8]. The Figlewski model was modified by Henderson et al. so that the formula would have no static arbitrage [10]. In this paper, we show how to construct a huge class of such static no arbitrage pricing functions, making use of distortions, coherent risk measures and the pricing theory in incomplete markets by Carr et al. [4]. Through this construction, we provide a more elaborate static no arbitrage pricing formula than Black-Sholes in the above scheme. Moreover, using our pricing formula, we find a volatility curve which fits with striking accuracy the synthetic data used by Henderson et al. [10].