• Title/Summary/Keyword: cognitive stimulation

Search Result 141, Processing Time 0.027 seconds

Promotion of formyl peptide receptor 1-mediated neutrophil chemotactic migration by antimicrobial peptides isolated from the centipede Scolopendra subspinipes mutilans

  • Park, Yoo Jung;Lee, Sung Kyun;Jung, Young Su;Lee, Mingyu;Lee, Ha Young;Kim, Sang Doo;Park, Joon Seong;Koo, JaeHyung;Hwang, Jae Sam;Bae, Yoe-Sik
    • BMB Reports
    • /
    • v.49 no.9
    • /
    • pp.520-525
    • /
    • 2016
  • We investigated the effects of two antimicrobial peptides (AMPs) isolated from Scolopendra subspinipes mutilans on neutrophil activity. Stimulation of mouse neutrophils with the two AMPs elicited chemotactic migration of the cells in a pertussis toxin-sensitive manner. The two AMPs also stimulated activation of ERK and Akt, which contribute to chemotactic migration of neutrophils. We found that AMP-stimulated neutrophil chemotaxis was blocked by a formyl peptide receptor (FPR) 1 antagonist (cyclosporin H); moreover the two AMPs stimulated the chemotactic migration of FPR1-expressing RBL-2H3 cells but not of vector-expressing RBL-2H3 cells. We also found that the two AMPs stimulate neutrophil migration in vivo, and that this effect is blocked in FPR1-deficient mice. Taken together, our results suggest that the two AMPs stimulate neutrophils, leading to chemotactic migration through FPR1, and the two AMPs will be useful for the study of FPR1 signaling and neutrophil activation.

The Effects of Transcranial Electric Stimulation and Cognition Reinforcement Training on the Expression of Tau Protein in Alzheimer's Disease Rat Models

  • Ryu, Sung Hoon;Min, Kyung Ok;Sim, Ki Cheol;Kim, Gi Do;Kim, Gye Yeop
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.4 no.1
    • /
    • pp.479-487
    • /
    • 2013
  • This study is intended to examine the tDCS and Morris Water maze training in Alzheimer's disease(AD) rats on Tau protein expression. Experiment groups were divided into four groups and assigned 16 rats to each group. Group I was a control group(AD induced by scopolamine); Group II was a experimental control group(AD injured by scopolamine and treatment tacrine); Group III was a group of tDCS application after AD injured by scopolamine; Group IV was a group of morris water maze training after AD injured by scopolamine. In cognition test, the outcome of group II was significantly lower than the groups(p<.001). and group III, IV were significantly low result at 14 days(p<.05). In histological finding, the experimental groups were destroy of micro vessels and finding of cell atropy and swelling. Group III, IV were decreased in degeneration of liver and kidney cells. In immuno- histochemistric response of BDNF and tau protein in hippocampus, BDNF expression of Group II was more increase than the other groups. and increase of BDNF expression was III, IV were higher than group I at 21 days. Tau protein expression of Group II was more decrease than the other groups. and decrease of Tau protein expression was III, IV were lower than group I at 21 days. These result suggest that improved tDCS and morris water maze training after scopolamine induced is associated with dynamically altered expression of BDNF and Tau protein in hippocampus and that is related with cognitive function.

Understanding Neurogastroenterology From Neuroimaging Perspective: A Comprehensive Review of Functional and Structural Brain Imaging in Functional Gastrointestinal Disorders

  • Kano, Michiko;Dupont, Patrick;Aziz, Qasim;Fukudo, Shin
    • Journal of Neurogastroenterology and Motility
    • /
    • v.24 no.4
    • /
    • pp.512-527
    • /
    • 2018
  • This review provides a comprehensive overview of brain imaging studies of the brain-gut interaction in functional gastrointestinal disorders (FGIDs). Functional neuroimaging studies during gut stimulation have shown enhanced brain responses in regions related to sensory processing of the homeostatic condition of the gut (homeostatic afferent) and responses to salience stimuli (salience network), as well as increased and decreased brain activity in the emotional response areas and reduced activation in areas associated with the top-down modulation of visceral afferent signals. Altered central regulation of the endocrine and autonomic nervous responses, the key mediators of the brain-gut axis, has been demonstrated. Studies using resting-state functional magnetic resonance imaging reported abnormal local and global connectivity in the areas related to pain processing and the default mode network (a physiological baseline of brain activity at rest associated with self-awareness and memory) in FGIDs. Structural imaging with brain morphometry and diffusion imaging demonstrated altered gray- and white-matter structures in areas that also showed changes in functional imaging studies, although this requires replication. Molecular imaging by magnetic resonance spectroscopy and positron emission tomography in FGIDs remains relatively sparse. Progress using analytical methods such as machine learning algorithms may shift neuroimaging studies from brain mapping to predicting clinical outcomes. Because several factors contribute to the pathophysiology of FGIDs and because its population is quite heterogeneous, a new model is needed in future studies to assess the importance of the factors and brain functions that are responsible for an optimal homeostatic state.

SPA0355 prevents ovariectomy-induced bone loss in mice

  • Kim, Sang Hoon;Zhang, Zhongkai;Moon, Young Jae;Park, Il Woon;Cho, Yong Gon;Jeon, Raok;Park, Byung-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • Estrogen withdrawal in post-menopausal women leads to overactivation of osteoclasts, which contributes to the development of osteoporosis. Inflammatory cytokines are known as one of mechanisms of osteoclast activation after estrogen deficiency. SPA0355 is a thiourea derivative that has been investigated for its antioxidant and anti-inflammatory activities. However, its efficacy in bone resorption has not been previously investigated. The aim of this study was to investigate the impact of SPA0355 on the development of osteoporosis and to explore its mode of action. In vitro experiments showed that SPA0355 inhibited receptor activator of $NF-{\kappa}B$ ligand (RANKL)-induced osteoclastogenesis in primary bone marrow-derived macrophages. This effect appears to be independent of estrogen receptor activation as ICI 180,782 failed to abrogate its effects on osteoclasts. Further signaling studies revealed that SPA0355 suppressed activation of the MAPKs, Akt, and $NF-{\kappa}B$ pathways. SPA0355 also increased osteoblastic differentiation, as evidenced by its effects on alkaline phosphatase activity and mineralization nodule formation. Intraperitoneal administration of SPA0355 to ovariectomized mice prevented bone loss, as verified by three-dimensional images and bone morphometric parameters derived from ${\mu}CT$ analysis. Noticeably, SPA0355 did not show hepatotoxicity and nephrotoxicity and also had little effect on hematological parameters. Taken together, the results indicate that SPA0355 may protect against bone loss in ovariectomized mice by stimulation of osteoblast differentiation and by inhibition of osteoclast resorption. Therefore, SPA0355 is a safe and potential candidate for management of postmenopausal osteoporosis.

The Effects of Virtual Upper Extremity Training Using the RAPAEL Smart Glove on Physical and Cognitive Function in Stroke Survivors -A Single Group Study-

  • Song, Chiang-Soon;Lim, Jae-Heon;Jeon, Byeong-Hyeon;Lee, Hye-Sun
    • PNF and Movement
    • /
    • v.17 no.2
    • /
    • pp.199-206
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the effects of a virtual upper extremity training program using the RAPAEL Smart Glove on upper extremity function in stroke survivors with chronic hemiparesis and to focus the training program development using the Smart Glove as a feasibility study. Methods: This study was conducted using a single group and pre-post test research design in the outpatient departments of local rehabilitation units. Ten chronic hemiparetic stroke survivors with a diagnosis of first stroke received therapeutic rehabilitation at the rehabilitation units. All the participants used a virtual reality program with the RAPAEL Smart Glove for 30 minutes per session 3 days a week over 8 weeks. They also received conventional occupational therapy with functional electrical stimulation for 40 minutes per session 3 days a week for 8 weeks as an additional therapy. To analyze the effects of this therapeutic intervention, four clinical measures, including the box-block test (BBT), the Wolf motor function test (WMFT), the trail-making score, the Jebsen Taylor hand function test (JTHFT), and grip strength, were used. Results: Upon completion of the intervention in week 8, all the participants demonstrated significant WMFT, JTT, BBT, grip strength, and trail-making score gains compared to the respective baselines at week 0. Conclusion: This study suggests that virtual upper extremity training using the RAPAEL Smart Glove has a reasonable and beneficial effects on upper extremity function in chronic hemiparetic stroke survivors.

Problems of Teaching Pupils of Non-Specialized Classes to Program and Ways to Overcome Them: Local Study

  • Rudenko, Yuliya;Drushlyak, Marina;Osmuk, Nataliia;Shvets, Olha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.105-112
    • /
    • 2022
  • The development and spread of IT-technologies has raised interest in teaching programming pupils. The article deals with problems related to programming and ways to overcome them. The importance of programming skills is emphasized, as this process promotes the formation of algorithmic thinking of pupils. The authors determined the level of pupils' interest to programing learning depending on the age. The analysis has showed that the natural interest of younger pupils in programming is decreasing over the years and in the most productive period of its study is minimized. It is revealed that senior school pupils are characterized by low level of interest in the study of programming; lack of motivation; the presence of psychological blocks on their own abilities in the context of programming; law level of computer science understanding. To overcome these problems, we conducted the second stage of the experiment, which was based on a change in the approach to programing learning, which involved pupils of non-specialized classes of senior school (experimental group). During the study of programming, special attention was paid to the motivational and psychological component, as well as the use of game technologies and teamwork of pupils. The results of the pedagogical experiment on studying the effectiveness of teaching programming for pupils of nonspecialized classes are presented. Improvement of the results provided the use of social and cognitive motives; application of verbal and non-verbal, external and internal means; communicative attacks; stimulation and psychological setting; game techniques, independent work and reflection, teamwork. The positive effect of the implemented methods is shown by the results verified by the methods of mathematical statistics in the experimental and control groups of pupils.

MARS-PD: Meridian Activation Remedy System for Parkinson's Disease

  • Miso S. Park;Chan-young Kim;In-woo Choi;In-cheol Chae;Wangjung Hur;SangSoo Park;Horyong Yoo
    • The Journal of Internal Korean Medicine
    • /
    • v.44 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Objective: There are currently no disease-modifying medications or definite long-term sustainable interventions for patients with Parkinson's disease (PD), indicating an unmet treatment need. Our goal was to create a long-term sustainable intervention for PD patients that can be used in Korean medicine clinics. Methods: The Meridian Activation Remedy System (MARS) was created to stimulate a patient's 12 meridians and sinew channels using a combination of acupoint stimulation and exercise. The acupoints and motions used in MARS were selected through literature studies and expert advice. The methodologies were refined using observational and case studies. With slow and fast movements, the MARS intervention was intended to activate both slow- and fast-twitch muscle fibers. Intradermal acupuncture and motion that shift the center of gravity were employed to enhance the patient's balance and proprioception. In addition, the intervention included alternating movement exercises to address the complex cognitive decline commonly occurring in PD patients. Results: The following acupoints were chosen for the MARS intervention: bilateral Hegu (LI4), Houxi (SI3), Waiguan (TE5), Neiguan (PC6), Zhongchong (PC9), Yuji (LU10), Zusanli (ST36), Yanglingquan (GB34), Taichong (LR3), Kunlun (BL60), and Taixi (KI3). We also developed actions that can stimulate the body's 12 meridians. Conclusion: We developed the MARS intervention, which combines acupuncture and exercise, to address the unmet therapeutic needs of PD patients. We hope that with additional research, the MARS intervention can be set as an effective therapeutic program for PD patients.

Oral Administration of Gintonin Attenuates Cholinergic Impairments by Scopolamine, Amyloid-β Protein, and Mouse Model of Alzheimer's Disease

  • Kim, Hyeon-Joong;Shin, Eun-Joo;Lee, Byung-Hwan;Choi, Sun-Hye;Jung, Seok-Won;Cho, Ik-Hyun;Hwang, Sung-Hee;Kim, Joon Yong;Han, Jung-Soo;Chung, ChiHye;Jang, Choon-Gon;Rhim, Hyewon;Kim, Hyoung-Chun;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.796-805
    • /
    • 2015
  • Gintonin is a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand. Oral administration of gintonin ameliorates learning and memory dysfunctions in Alzheimer's disease (AD) animal models. The brain cholinergic system plays a key role in cognitive functions. The brains of AD patients show a reduction in acetylcholine concentration caused by cholinergic system impairments. However, little is known about the role of LPA in the cholinergic system. In this study, we used gintonin to investigate the effect of LPA receptor activation on the cholinergic system in vitro and in vivo using wild-type and AD animal models. Gintonin induced $[Ca^{2+}]_i $ transient in cultured mouse hippocampal neural progenitor cells (NPCs). Gintonin-mediated $[Ca^{2+}]_i $ transients were linked to stimulation of acetylcholine release through LPA receptor activation. Oral administration of gintonin-enriched fraction (25, 50, or 100 mg/kg, 3 weeks) significantly attenuated scopolamine-induced memory impairment. Oral administration of gintonin (25 or 50 mg/kg, 1 2 weeks) also significantly attenuated amyloid-${\beta}$ protein ($A{\beta}$)-induced cholinergic dysfunctions, such as decreased acetylcholine concentration, decreased choline acetyltransferase (ChAT) activity and immunoreactivity, and increased acetylcholine esterase (AChE) activity. In a transgenic AD mouse model, long-term oral administration of gintonin (25 or 50 mg/kg, 3 months) also attenuated AD-related cholinergic impairments. In this study, we showed that activation of G protein-coupled LPA receptors by gintonin is coupled to the regulation of cholinergic functions. Furthermore, this study showed that gintonin could be a novel agent for the restoration of cholinergic system damages due to $A{\beta}$ and could be utilized for AD prevention or therapy.

A Study on the Development of a Model for Attitude toward Reading (독서태도 모델 개발 연구)

  • Park, Ju-Hyeon;Lee, Myoung-Gyu
    • Journal of Korean Library and Information Science Society
    • /
    • v.46 no.4
    • /
    • pp.271-297
    • /
    • 2015
  • The purpose of this study is to develop a model of attitude toward reading. For that the concept and factors of reading attitude were examined and the preceding reading attitude models were critically studied to propose the new reading attitude model. The reading attitude model is consisted of three component named reading environment domain, reader domain and reading domain. The results of the development of a model of attitude toward reading are as follows. First, This study proposed a theoretical framework that can check and measure the reading attitude in various aspects by dividing reading attitudes into cognition, affect and intention factors. Second, It reinforced the logicality on the construct of reading attitude by dividing behavioral factor of reading attitude into the intention and the behavior. Third, This Model reflected the importance of book with text by specifying physical books and reading a book in the model. Fourth, this model theoretically proposes the potential for change of reading attitude and behavior by suggesting cognitive and affective schema from reading experience. Fifth, the developed reading attitude model helps to understand the form and process of reading attitude by presenting impact of reading environment and stimulation derived from reading environment on reader and reader's reading behavior and affective relation on feedback.

Effects of Virtual Reality Images on Body Stability : Focused on Hand Stability (VR 영상이 신체 안정성에 미치는 영향 : 손 안정성을 중심으로)

  • Han, Seung Jo;Kim, Sun-Uk;Koo, Kyo-Chan;Lee, Kyun-Joo;Cho, Min-Su
    • Journal of Digital Convergence
    • /
    • v.15 no.8
    • /
    • pp.391-400
    • /
    • 2017
  • The purpose of this paper is to present the effect of image stimulation on body stability as a conceptual model and to investigate the effect of image stimulus(2D, VR) on body stability(hand stability) through experiments Recently, stereoscopic images such as virtual and augmented reality are combined with smart phones and exercise equipments, and the diffusion is becoming active. The possibility of a safety accident or human error is also increasing as it temporarily affects the balance of the body and hand stability after the image stimulus is removed. The conceptual model is presented based on the results of previous studies. Based on the experimental results, the conceptual model has been explained in combination with the human information processing process and cognitive resource models that take place in the brain. Twenty subjects were exposed to 2D and VR stimuli, and display fatigue was measured by cybersickness questionnaire and hand stability by hand steadiness tester. Experimental results show that VR images induce higher display fatigue and lower hand stability than 2D. In this study, it is meaningful that hand stability according to image type and display fatigue level which have not been tried yet is revealed through conceptual model and experiment.