• 제목/요약/키워드: cofinite extension

검색결과 4건 처리시간 0.016초

AN ABELIAN CATEGORY OF WEAKLY COFINITE MODULES

  • Gholamreza Pirmohammadi
    • 대한수학회보
    • /
    • 제61권1호
    • /
    • pp.273-280
    • /
    • 2024
  • Let I be an ideal of a commutative Noetherian semi-local ring R and M be an R-module. It is shown that if dim M ≤ 2 and SuppR M ⊆ V (I), then M is I-weakly cofinite if (and only if) the R-modules HomR(R/I, M) and Ext1R(R/I, M) are weakly Laskerian. As a consequence of this result, it is shown that the category of all I-weakly cofinite modules X with dim X ≤ 2, forms an Abelian subcategory of the category of all R-modules. Finally, it is shown that if dim R/I ≤ 2, then for each pair of finitely generated R-modules M and N and each pair of the integers i, j ≥ 0, the R-modules TorRi(N, HjI(M)) and ExtiR(N, HjI(M)) are I-weakly cofinite.

FINITENESS PROPERTIES OF EXTENSION FUNCTORS OF COFINITE MODULES

  • Irani, Yavar;Bahmanpour, Kamal
    • 대한수학회보
    • /
    • 제50권2호
    • /
    • pp.649-657
    • /
    • 2013
  • Let R be a commutative Noetherian ring, I an ideal of R and T be a non-zero I-cofinite R-module with dim(T) ${\leq}$ 1. In this paper, for any finitely generated R-module N with support in V(I), we show that the R-modules $Ext^i_R$(T,N) are finitely generated for all integers $i{\geq}0$. This immediately implies that if I has dimension one (i.e., dim R/I = 1), then $Ext^i_R$($H^j_I$(M), N) is finitely generated for all integers $i$, $j{\geq}0$, and all finitely generated R-modules M and N, with Supp(N) ${\subseteq}$ V(I).

A RECENT GENERALIZATION OF COFINITELY INJECTIVE MODULES

  • Esra OZTURK SOZEN
    • 호남수학학술지
    • /
    • 제45권3호
    • /
    • pp.397-409
    • /
    • 2023
  • Let R be an associative ring with identity and M be a left R-module. In this paper, we define modules that have the property (δ-CE) ((δ-CEE)), these are modules that have a δ-supplement (ample δ-supplements) in every cofinite extension which are generalized version of modules that have the properties (CE) and (CEE) introduced in [6] and so a generalization of Zöschinger's modules with the properties (E) and (EE) given in [23]. We investigate various properties of these modules along with examples. In particular we prove these: (1) a module M has the property (δ-CEE) if and only if every submodule of M has the property (δ-CE); (2) direct summands of a module that has the property (δ-CE) also have the property (δ-CE); (3) each factor module of a module that has the property (δ-CE) also has the property (δ-CE) under a special condition; (4) every module with composition series has the property (δ-CE); (5) over a δ-V -ring a module M has the property (δ-CE) if and only if M is cofinitely injective; (6) a ring R is δ-semiperfect if and only if every left R-module has the property (δ-CE).

ON THE COHOMOLOGICAL DIMENSION OF FINITELY GENERATED MODULES

  • Bahmanpour, Kamal;Samani, Masoud Seidali
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.311-317
    • /
    • 2018
  • Let (R, m) be a commutative Noetherian local ring and I be an ideal of R. In this paper it is shown that if cd(I, R) = t > 0 and the R-module $Hom_R(R/I,H^t_I(R))$ is finitely generated, then $$t={\sup}\{{\dim}{\widehat{\hat{R}_p}}/Q:p{\in}V(I{\hat{R}}),\;Q{\in}mAss{_{\widehat{\hat{R}_p}}}{\widehat{\hat{R}_p}}\;and\;p{\widehat{\hat{R}_p}}=Rad(I{\wideha{\hat{R}_p}}=Q)\}$$. Moreover, some other results concerning the cohomological dimension of ideals with respect to the rings extension $R{\subset}R[X]$ will be included.