• Title/Summary/Keyword: coefficient-based method

Search Result 2,699, Processing Time 0.029 seconds

The surface stress effects on the buckling analysis of porous microcomposite annular sandwich plate based on HSDT using Ritz method

  • Mohsen Emdadi;Mehdi Mohammadimehr;Borhan Rousta Navi
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.439-454
    • /
    • 2023
  • In this article, the surface stress effects on the buckling analysis of the annular sandwich plate is developed. The proposed plate is composed of two face layers made of carbon nanotubes (CNT) reinforced composite with assuming of fully bonded to functionally graded porous core. The generalized rule of the mixture is employed to predict the mechanical properties of the microcomposite sandwich plate. The derived potentials energy based on higher order shear deformation theory (HSDT) and modified couple stress theory (MCST) is solved by employing the Ritz method. An exact analytical solution is presented to calculate the critical buckling loads of the annular sandwich plate. The predicted results are validated by carrying out the comparison studies for the buckling analysis of annular plates with those obtained by other analytical and finite element methods. The effects of various parameters such as material length scale parameter, core thickness to total thickness ratio (hc/h), surface elastic constants based on surface stress effect, various boundary condition and porosity distributions, size of the internal pores (e0), Skempton coefficient and elastic foundation on the critical buckling load have been studied. The results can be served as benchmark data for future works and also in the design of materials science, injunction high-pressure micropipe connections, nanotechnology, and smart systems.

Analytical and ANN-based models for assessment of hunchback retaining walls: Investigating lateral earth pressure in unsaturated backfill

  • Sivani Remash Thottoth;Vishwas N Khatria
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.285-305
    • /
    • 2024
  • This study investigates the behaviour of hunchback retaining walls supporting unsaturated sandy backfill under active earth pressure conditions. Utilizing a horizontal slice method and a unified effective stress methodology, the influence of various factors on lateral earth pressure, including the position of the hunch along the wall, friction angles, and wall heights, is explored. The results suggest that relocating the hunch position from close to the wall's top to near its base leads to a significant decrease (ranging from 54% to 81%) in lateral earth pressure. However, as the hunch position transitions from near the top to mid-height, the point of application of active thrust shifts upward initially, then slightly downward as the hunch position approaches the toe. Notably, the reduction in lateral earth pressure is more pronounced for shorter wall heights and higher friction angles. Building upon these findings, an Artificial Neural Network (ANN)-based model is developed to accurately predict the lateral earth pressure coefficient and point of application, achieving R2 values of 0.94 and 0.93, respectively. In addition, an analytical model based on Coulomb's earth pressure theory is presented and compared with ANN models. These models are anticipated to assist designers and practitioners in optimizing hunchback retaining walls for unsaturated backfill.

Characteristic equation solution of nonuniform soil deposit: An energy-based mode perturbation method

  • Pan, Danguang;Lu, Wenyan;Chen, Qingjun;Lu, Pan
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2019
  • The mode perturbation method (MPM) is suitable and efficient for solving the eigenvalue problem of a nonuniform soil deposit whose property varies with depth. However, results of the MPM do not always converge to the exact solution, when the variation of soil deposit property is discontinuous. This discontinuity is typical because soil is usually made up of sedimentary layers of different geologic materials. Based on the energy integral of the variational principle, a new mode perturbation method, the energy-based mode perturbation method (EMPM), is proposed to address the convergence of the perturbation solution on the natural frequencies and the corresponding mode shapes and is able to find solution whether the soil properties are continuous or not. First, the variational principle is used to transform the variable coefficient differential equation into an equivalent energy integral equation. Then, the natural mode shapes of the uniform shear beam with same height and boundary conditions are used as Ritz function. The EMPM transforms the energy integral equation into a set of nonlinear algebraic equations which significantly simplifies the eigenvalue solution of the soil layer with variable properties. Finally, the accuracy and convergence of this new method are illustrated with two case study examples. Numerical results show that the EMPM is more accurate and convergent than the MPM. As for the mode shapes of the uniform shear beam included in the EMPM, the additional 8 modes of vibration are sufficient in engineering applications.

Sound Absorption Capability and Bending Strength of Miscanthus Particle Based Board (억새 파티클보드의 흡음성능과 휨강도성능)

  • Kang, Chun-Won;Park, Hee-Jun;Jeon, Soon-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • Sound absorption capability and mechanical properties such as MOE and MOR in bending of miscanthus particle based board were estimated by the two microphone transfer function method and three point bending method, respectively. The results are summarized as follows: The sound absorption coefficients of miscanthus particle based board was higher than those of commercial gypsum board which is well used as sound absorbing barrier. The MOR and MOE of miscanthus particle based board increased with increasing of board density. The sound absorption coefficients of miscanthus particle based board were 50~80% in the frequency range of about 1~2.5 Khz. In entire frequency range, those value increased with target board density decreasing.

Blockage-Correction Method for Unsteady Flows in a Closed Test-Section Wind Tunnel (폐쇄형 풍동 시험부 내의 비정상 흐름에 대한 Blockage 보정 기법 연구)

  • Gang, Seung-Hui;Gwon, O-Jun;An, Seung-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.67-74
    • /
    • 2006
  • An unsteady blockage-correction method utilizing wall pressure distribution on the test section has been developed for the wall interference correction of a closed test-section subsonic wind tunnel. The pressure distribution along the test section wall was decomposed into Fourier series and a quasi-steady method based on a measured-boundary-condition method was applied to each Fourier coefficient. The unsteady correction for a complete test period was accomplished by recombining each corrected terms. The present method was validated by appling computed unsteady flows over a cylinder and an oscillating airfoil in the test sections. The corrected results by the present method agreed well with free-air condition.

The Analysis of the Seepage Quantity of Reservoir Embankment using Stochastic Response Surface Method (확률론적 응답면 기법을 이용한 저수지 제체의 침투수량 해석)

  • Bong, Tae-Ho;Son, Young-Hwan;Noh, Soo-Kack;Choi, Woo-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.75-84
    • /
    • 2013
  • The seepage quantity analysis of reservoir embankment is very important for assessment of embankment safety. However, the conventional analysis does not consider uncertainty of soil properties. Permeability is known that the coefficient of variation is larger than other soil properties and seepage quantity is highly dependent on the permeability of embankment. Therefore, probabilistic analysis should be carried out for seepage analysis. To designers, however, the probabilistic analysis is not an easy task. In this paper, the method that can be performed probabilistic analysis easily and efficiently through the numerical analysis based commercial program is proposed. Stochastic response surface method is used for approximate the limit state function and when estimating the coefficients, the moving least squares method is applied in order to reduce local error. The probabilistic analysis is performed by LHC-MCS through the response surface. This method was applied to two type (homogeneous, core zone) earth dams and permeability of embankment body and core are considered as random variables. As a result, seepage quantity was predicted effectively by response surface and probabilistic analysis could be successfully implemented.

Feasibility of a simple determination of soil organic matter content using spectrophotometric method in Korean soils (분광법을 이용한 토양 유기물의 간이 측정 방법의 국내 적용 가능성)

  • Seo, Young-Ho;Mo, Young-Moon;Cho, Byoung-Ouk;Kang, An-Seok;Jeong, Byeong-Chan;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.1008-1011
    • /
    • 2010
  • A method currently used to determine soil organic matter (SOM), Tyurin method, is time consuming and expensive while accurate. Recently, a spectrophotometric determination was reported to be rapid, accurate, stable, easy to execute, and amendable to field use for soil samples obtained from Texas, USA. The objective of this study was to test if the spectrophotometric method is applicable to soils in Korea. Soil organic matter was extracted by 1 M HCl followed by a 0.25 M NaOH-0.1 M sodium pyrophosphate solution at a ratio of 1:250 soil:extractant. Soil organic matter determined by Tyurin method was linearly related to the value based on absorbance at 300 nm of the soil extracts with a coefficient of determination ($r^2$) of 0.81. Therefore, the result imply that this spectrophotometric method can be used to determine the soil organic matter of agricultural soils in Korea.

Computation of Passive Earth Pressure Coefficient considering Logarithmic Spiral Arc (대수나선 파괴면을 고려한 수동토압계수의 계산)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.425-433
    • /
    • 2019
  • In this study, a simple method of calculating the passive earth pressure coefficient, which is based on the limit equilibrium method, was proposed and the calculated earth pressure coefficients were compared with those of several researchers. The angle of the linear failure surface, which is combined with the logarithmic spiral arc, to the failure surfaces of the passive zone was derived and the whole passive thrust acting on the Rankine passive zone was considered in the proposed method instead of considering the horizontal component of passive thrust. The variations of the passive earth pressure coefficients of the proposed method showed the same tendency as that of the Coulomb's passive earth pressure coefficients with an inclined angle of backfill and internal friction angle. The magnitude of passive earth pressure coefficients of the proposed method were smaller than those of the Coulomb in almost all cases. A comparison of the passive earth pressure coefficients with the wall friction angle revealed the passive earth pressure coefficients of the proposed method to be smaller than those of the Coulomb and the differences between the two values increased with increasing internal friction angle and wall friction angle. A comparison of the passive earth pressure coefficients of the proposed method with those of the existing researchers for the considered internal friction angles of $25^{\circ}$, $30^{\circ}$, $35^{\circ}$, and $40^{\circ}$ and three wall friction angles revealed the maximum percentage differences for the Kerisel and Absi method, Soubra method, Lancellotta method, $Ant\tilde{a}o$ et al. method, Kame method, and Reddy et al. method to be 4.8%, 3.8%, 31.1%, 4.0%, 20.6%, and 12.8% respectively. The passive earth pressure coefficient and existing pressures were similar in all cases.

Feasibility of the Threshold-Based Quantification of Myocardial Fibrosis on Cardiac CT as a Prognostic Marker in Nonischemic Dilated Cardiomyopathy

  • Na Young Kim;Dong Jin Im;Yoo Jin Hong;Byoung Wook Choi;Seok-Min Kang;Jong-Chan Youn;Hye-Jeong Lee
    • Korean Journal of Radiology
    • /
    • v.25 no.6
    • /
    • pp.540-549
    • /
    • 2024
  • Objective: This study investigated the feasibility and prognostic relevance of threshold-based quantification of myocardial delayed enhancement (MDE) on CT in patients with nonischemic dilated cardiomyopathy (NIDCM). Materials and Methods: Forty-three patients with NIDCM (59.3 ± 17.1 years; 21 male) were included in the study and underwent cardiac CT and MRI. MDE was quantified manually and with a threshold-based quantification method using cutoffs of 2, 3, and 4 standard deviations (SDs) on three sets of CT images (100 kVp, 120 kVp, and 70 keV). Interobserver agreement in MDE quantification was assessed using the intraclass correlation coefficient (ICC). Agreement between CT and MRI was evaluated using the Bland-Altman method and the concordance correlation coefficient (CCC). Patients were followed up for the subsequent occurrence of the primary composite outcome, including cardiac death, heart transplantation, heart failure hospitalization, or appropriate use of an implantable cardioverter-defibrillator. The Kaplan-Meier method was used to estimate event-free survival according to MDE levels. Results: Late gadolinium enhancement (LGE) was observed in 29 patients (67%, 29/43), and the mean LGE found with the 5-SD threshold was 4.1% ± 3.6%. The 4-SD threshold on 70-keV CT showed excellent interobserver agreement (ICC = 0.810) and the highest concordance with MRI (CCC = 0.803). This method also yielded the smallest bias with the narrowest range of 95% limits of agreement compared to MRI (bias, -0.119%; 95% limits of agreement, -4.216% to 3.978%). During a median follow-up of 1625 days (interquartile range, 712-1430 days), 10 patients (23%, 10/43) experienced the primary composite outcome. Event-free survival significantly differed between risk subgroups divided by the optimal MDE cutoff of 4.3% (log-rank P = 0.005). Conclusion: The 4-SD threshold on 70-keV monochromatic CT yielded results comparable to those of MRI for quantifying MDE as a marker of myocardial fibrosis, which showed prognostic value in patients with NIDCM.

Study on Performance-based Evaluation Method for Rock Slopes : Deduction of Weight and Validation - Based on the AHP method and Correlation Analysis - (암반비탈면의 성능기반 평가기법 연구 : 가중치 도출 및 검증 - AHP 기법과 상관분석을 중심으로 -)

  • Lee, Jong Gun;Heo, In Young;Kang, Chang Kyu;Ryu, Ho Sang;Chang, Buhm Soo
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.431-440
    • /
    • 2016
  • This study aims to suggest the detailed evaluation criteria based on performances for rock slopes. Using the previous research result, final evaluation items are proposed considering characteristics and similarities of each evaluation item. Weight for each evaluation item is deducted using AHP method, verification for suggested evaluation criteria is conducted based on correlation analysis. The research results as follows. All evaluation items have a high statistical correlation with final evaluation result(safety rating). Especially, items of the "rockfall", "ground deformation", "discontinuity characteristic", "instable lithology" were shown the highest in relative correlation coefficient(R), It is judged that items and weight presented in this study well reflect characteristics of rock slopes.