• Title/Summary/Keyword: coefficient-based method

Search Result 2,699, Processing Time 0.036 seconds

HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC EQUATIONS WITH NONLINEAR COEFFICIENTS

  • MINAM, MOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.244-262
    • /
    • 2022
  • In this paper, we analyze the hybridizable discontinuous Galerkin (HDG) method for second-order elliptic equations with nonlinear coefficients, which are used in many fields. We present the HDG method that uses a mixed formulation based on numerical trace and flux. Under assumptions on the nonlinear coefficient and H2-regularity for a dual problem, we prove that the discrete systems are well-posed and the numerical solutions have the optimal order of convergence as a mesh parameter. Also, we provide a matrix formulation that can be calculated using an iterative technique for numerical experiments. Finally, we present representative numerical examples in 2D to verify the validity of the proof of Theorem 3.10.

Measurement of the construction structure of hot-heated cement using nitrogen adsorption method (질소흡착법을 사용한 고온 가열 시멘트의 세공구조 측정)

  • Kim, Min-Hyouck;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.140-141
    • /
    • 2020
  • Concrete has a lower thermal conductivity or thermal diffusion coefficient compared to other building materials, so it is widely used as fireproof compartment material or refractory material for structures. However, in the event of thermal damage such as fire, cement curing agents and aggregates act differently, resulting in heat generation or deterioration of tissue due to dehydration, resulting in deterioration of physical properties and fire resistance. Therefore, in this study, the processing structure of cement paste is measured through nitrogen absorption method. The test specimen is a cement paste of 40% W/C and is set at 1000 ℃ under heating temperature conditions. As the temperature rose, the micro-pore mass below was reduced based on about 0.01 감소m, but the air gap above that was increased.Thus, in the range of pores measured in nitrogen adsorption, the air mass tended to decrease under high temperature conditions.

  • PDF

Quantitative analysis of phosphorus by HERETIC-NMR method (HERETIC-NMR법을 이용한 인의 정량분석)

  • Lim, Heon-Sung;Park, Chan-Jo;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.438-441
    • /
    • 2008
  • We have developed an alternative to the internal chemical reference based on a calibrated reference signal which is not a real NMR line but an electronically produced signal (HERETIC) and determined the phosphorus concentration using this method. The area ratio of HERETIC and sample peaks obtained from the standard samples was used to measure the concentrations of different samples directly. The analysis of phosphorus by this method showed the excellent linear regression coefficient ($R^2=0.9999$) for the concentration range from 20 ppm to 500 ppm with HERETIC peak as reference.

Evaluation of Similarity Analysis of Newspaper Article Using Natural Language Processing

  • Ayako Ohshiro;Takeo Okazaki;Takashi Kano;Shinichiro Ueda
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.1-7
    • /
    • 2024
  • Comparing text features involves evaluating the "similarity" between texts. It is crucial to use appropriate similarity measures when comparing similarities. This study utilized various techniques to assess the similarities between newspaper articles, including deep learning and a previously proposed method: a combination of Pointwise Mutual Information (PMI) and Word Pair Matching (WPM), denoted as PMI+WPM. For performance comparison, law data from medical research in Japan were utilized as validation data in evaluating the PMI+WPM method. The distribution of similarities in text data varies depending on the evaluation technique and genre, as revealed by the comparative analysis. For newspaper data, non-deep learning methods demonstrated better similarity evaluation accuracy than deep learning methods. Additionally, evaluating similarities in law data is more challenging than in newspaper articles. Despite deep learning being the prevalent method for evaluating textual similarities, this study demonstrates that non-deep learning methods can be effective regarding Japanese-based texts.

Simplified analysis method for anti-overturning of single-column pier girder bridge

  • Liang Cao;Hailei Zhou;Zhichao Ren
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.403-416
    • /
    • 2024
  • The single-column pier girder bridge, due to its low engineering cost, small footprint, and aesthetic appearance, is extensively employed in urban viaducts and interchange ramps. However, its structural design makes it susceptible to eccentric loads, flexural-torsional coupling effects, and centrifugal forces, among others. To evaluate its anti-overturning performance reasonably, it is crucial to determine the reaction force of the support for the single-column pier girder bridge. However, due to the interaction between vehicle and bridge and the complexity of vibration modes, it poses a significant challenge to analyze the theory or finite element method of single-column pier girder bridges. The unit load bearing reaction coefficient method is proposed in this study to facilitate the static analysis. Numerous parameter analyses have been conducted to account for the dynamic amplification effect. The results of these analyses reveal that the dynamic amplification factor is independent of road surface roughness but is influenced by factors such as the position of the support. Based on parameter analysis, the formula of the dynamic amplification factor is derived by fitting.

Robust Filter Based Wind Velocity Estimation Method for Unpowered Air Vehicle Without Air Speed Sensor (대기 속도 센서가 없는 무추력 항공기의 강인 필터 기반의 바람 속도 추정 기법)

  • Park, Yong-gonjong;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.107-113
    • /
    • 2019
  • In this paper, a robust filter based wind velocity estimation algorithm without an air velocity sensor in an air vehicle is presented. The wind velocity is useful information for the air vehicle to perform precise guidance and control. In general, the wind velocity can be obtained by subtracting an air velocity which is obtained by an air velocity sensor such as a pitot-tube, and a ground velocity which is obtained by a navigation equipment. However, in order to simplify the configuration of the air vehicle, the wind estimation algorithm is necessary because the wind velocity can not be directly obtained if the air velocity measurement sensor is not used. At this time, the aerodynamic coefficient of the air vehicle changes due to the turbulence, which causes the uncertainty of the system model of the filter, and the wind estimation performance deteriorates. Therefore, in this study, we propose a wind estimation method using $H{\infty}$ filter to ensure robustness against aerodynamic coefficient uncertainty, and we confirmed through simulation that the proposed method improves the performance in the uncertainty of aerodynamic coefficient.

Rapid and Sensitive Analysis of Valproic Acid in Human Red Blood Cell by LC-MS/MS

  • Han, Song-Hee;Kim, Yun-Jeong;Jeon, Ji-Young;Hwang, Min-Ho;Im, Yong-Jin;Jeong, Jin-A;Lee, Chang-Seop;Chae, Soo-Wan;Kim, Min-Gul
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1681-1685
    • /
    • 2012
  • A sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed to determine valproic acid in human red blood cell (RBC). It is important to measure the drug concentration of the RBC as well as that of the plasma because of drug partitioning for pharmacokinetic and pharmacodynamic study. The method was linear over the dynamic range of 1-100 ${\mu}g$/mL with a correlation coefficient $r$ = 0.9997. The linearity of this method was established from 1 to 100 ${\mu}g$/mL for valproic acid in red blood cell with accuracy and precision within 15% at all concentrations. The intra-run and inter-run assay accuracy and coefficient of variations are all within 15% for all QC samples prepared in plasma and red blood human samples. Then, valproic acid amount by protein precipitation in plasma was quantified by LC-MS/MS mass spectrometry. The distribution ratio of VPA in RBC and plasma was analyzed by clinical samples. Based on measurement of the valproic acid in human red blood cell, this method has been applied to clinical research for study of distribution ratio of valproic acid in blood.

Brain Wave Characteristic Analysis by Multi-stimuli with EEG Channel Grouping based on Binary Harmony Search (Binary Harmony Search 기반의 EEG 채널 그룹화를 이용한 다중 자극에 반응하는 뇌파 신호의 특성 연구)

  • Lee, Tae-Ju;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.725-730
    • /
    • 2013
  • This paper proposed a novel method for an analysis feature of an Electroencephalogram (EEG) at all channels simultaneously. In a BCI (Brain-Computer Interface) system, EEGs are used to control a machine or computer. The EEG signals were weak to noise and had low spatial resolution because they were acquired by a non-invasive method involving, attaching electrodes along with scalp. This made it difficult to analyze the whole channel of EEG signals. And the previous method could not analyze multiple stimuli, the result being that the BCI system could not react to multiple orders. The method proposed in this paper made it possible analyze multiple-stimuli by grouping the channels. We searched the groups making the largest correlation coefficient summation of every member of the group with a BHS (Binary Harmony Search) algorithm. Then we assumed the EEG signal could be written in linear summation of groups using concentration parameters. In order to verify this assumption, we performed a simulation of three subjects, 60 times per person. From the simulation, we could obtain the groups of EEG signals. We also established the types of stimulus from the concentration coefficient. Consequently, we concluded that the signal could be divided into several groups. Furthermore, we could analyze the EEG in a new way with concentration coefficients from the EEG channel grouping.

Classification of Urban Arterial Roads Based on Traffic Characteristics (교통특성에 따른 도시간선도로 위계분류법)

  • Lee, Jinsun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.32-38
    • /
    • 2018
  • Studies on classification of national roads have been continued, but there is little research on the classification of urban arterial roads. Due to the increase of traffic volume, urban arterial roads do not perform well as main roads. In this paper, the function of urban arterial road was established by using cluster analysis using traffic characteristics. Traffic characteristics such as traffic volume, weekend coefficient and speed coefficient were used to establish the functions of 55 main arterial roads in Seoul. The results of this paper are compared with those of the method using AADT. The method using AADT classifies the characteristics according to the traffic volume of the whole lane. In this paper, however, the results are derived using the traffic volume per lane reflecting the actual traffic volume. In addition, the functional classification of the arterial roads in Seoul was compared with the results of this paper to verify that the traffic characteristics were reflected. As a result, the method presented in this paper is more effective in showing traffic characteristics than the current highway functional classification method, and the functional classification system will be helpful for road extension and planning design.

MRI Artifact Correction due to Unknown Respiratory Motion (미지 호흡운동에 의한 MRI 아티팩트의 수정)

  • 김응규
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.53-62
    • /
    • 2004
  • In this study, an improved post-processing technique for correcting MRI artifact due to the unknown respiratory motion in the imaging plane is presented. Respiratory motion is modeled by a two-Dimensional linear expending-shrinking movement. Assuming that the body tissues are incompressible fluid like materials, the proton density per unit volume of the imaging object is kept constant. According to the introduced model, respiratory motion imposes phase error, non-uniform sampling and amplitude modulation distortions on the acquired MRI data. When the motion parameters are known or can be estimatead a reconstruction algorithm based on biliner superposition method was used to correct the MRI artifact. In the case of motion parameters are unknown, first, the spectrum shift method is applied to find the respiratory fluctuation function, x directional expansion coefficient and x directional expansion center. Next, y directional expansion coefficient and y directional expansion center are estimated by using the minimum energy method. Finally, the validity of this proposed method is shown to be effective by using the simulated motion images.