• Title/Summary/Keyword: coefficient-based method

Search Result 2,698, Processing Time 0.031 seconds

Water body extraction in SAR image using water body texture index

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.337-346
    • /
    • 2015
  • Water body extraction based on backscatter information is an essential process to analyze floodaffected areas from Synthetic Aperture Radar (SAR) image. Water body in SAR image tends to have low backscatter values due to homogeneous surface of water, while non-water body has higher backscatter values than water body. Non-water body, however, may also have low backscatter values in high resolution SAR image such as Kompsat-5 image, depending on surface characteristic of the ground. The objective of this paper is to present a method to increase backscatter contrast between water body and non-water body and also to remove efficiently misclassified pixels beyond true water body area. We create an entropy image using a Gray Level Co-occurrence Matrix (GLCM) and classify the entropy image into water body and non-water body pixels by thresholding of the entropy image. In order to reduce the effect of threshold value, we also propose Water Body Texture Index (WBTI), which measures simultaneously the occurrence of repeated water body pixel pair and the uniformity of water body in the binary entropy image. The proposed method produced high overall accuracy of 99.00% and Kappa coefficient of 90.38% in water body extraction using Kompsat-5 image. The accuracy analysis indicates that the proposed WBTI method is less affected by the choice of threshold value and successfully maintains high overall accuracy and Kappa coefficient in wide threshold range.

Devel opment of Weld Strength Analysis for Dessimilar Metal Friction Welds by Ultrasonic Technique (초음파법에 의한 이종재료 마찰용접강도 해소법의 개발)

  • 오세규;김동조
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.135-149
    • /
    • 1988
  • Friction welding has been shown to have significant economic and technical advantages. However, one of the major concerns in using friction welding is the reliability of the weld quality. No reliable nondestructive test method is available at present for detecting weld quality, particularly in a production environment. Friction welds are formed by the mechanisms of diffusion as well as mechanical interlocking. The severe plastic flow at the interface by forge action of the process brings the subsurfaces so close together that detection of any unbonded area becomes very difficult. This paper presents an attempt to determine the friction weld strength quantitatively using the ultrasonic pulse-echo method. Instead of detecting flaws or cracks at the interface, the new approach calculates the coefficient of reflection based on measured amplitudes of the echoes. It has been finally confirmed that this coefficient could provide the quantitative relationship to the weld quality such as tensile strength, torsional strength, impact value, hardness, etc. So a new nondestructive analysis system of friction weld strength of dissimilar metals using an ultrasonic technique could be well developed.

  • PDF

A Study on the Compensation of the Inductance Parameters of Interior Permanent-Magnet Synchronous Motors Affected by the Magnet Size

  • Jang, Ik-Sang;Lee, Hyung-Woo;Kim, Won-Ho;Cho, Su-Yeon;Kim, Mi-Jung;Lee, Ki-Doek;Lee, Ju
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.74-76
    • /
    • 2011
  • Interior permanent-magnet synchronous motors (IPMSMs) produce both magnetic and reluctance torques. The reluctance torque is due to the difference between the d- and q-axis inductances based on the geometric rotor structure. The steady-state performance analysis and precise control of the IPMSMs greatly depend on the accurate determination of the parameters. The three essential parameters of the IPMSMs are the armature flux linkage of the permanent magnet, the d-axis inductance, and the q-axis inductance. In the basic design step of an IPMSM, the inductance parameters are very important for determining the motor characteristics, such as the input voltage, torque, and efficiency. Thus, it is very important to accurately estimate the values of the motor inductances. The inductance parameters of IPMSMs have nonlinear characteristics along the magnet size because the iron core is saturated by the magnet and armature reaction fluxes. In this study, the inductance parameters were calculated using both the magnetic-equivalent-circuit method and the finite-element method (FEM). Then the calculated parameters were compensated by the saturation coefficient function, which was also calculated via the magnetic-equivalent-circuit method and FEM.

Temperature dependent buckling analysis of graded porous plate reinforced with graphene platelets

  • Wei, Guohui;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.275-290
    • /
    • 2021
  • The main purpose of this research work is to investigate the critical buckling load of functionally graded (FG) porous plates with graphene platelets (GPLs) reinforcement using generalized differential quadrature (GDQ) method at thermal condition. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the plate thickness direction. Generally, the thermal distribution is considered to be nonlinear and the temperature changing continuously through the thickness of the nanocomposite plates according to the power-law distribution. To model closed cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme are used, through which mechanical properties of the structures can be extracted. Based on the third order shear deformation theory (TSDT) and the Hamilton's principle, the equations of motion are established and solved for various boundary conditions (B.Cs). The fast rate of convergence and accuracy of the method are investigated through the different solved examples and validity of the present study is evaluated by comparing its numerical results with those available in the literature. A special attention is drawn to the role of GPLs weight fraction, GPLs patterns through the thickness, porosity coefficient and distribution of porosity on critical buckling load. Results reveal that the importance of thermal condition on of the critical load of FGP-GPL reinforced nanocomposite plates.

DEM numerical study on mechanical behaviour of coal with different water distribution models

  • Tan, Lihai;Cai, Xin;Ren, Ting;Yang, Xiaohan;Rui, Yichao
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.523-538
    • /
    • 2021
  • The mechanical behaviour and stability of coal mining engineering underground is significantly affected by ground water. In this study, nuclear magnetic resonance imaging (NMRI) technique was employed to determine the water distribution characteristics in coal specimens during saturation process, based on which the functional rule for water distribution was proposed. Then, using discrete element method (DEM), an innovative numerical modelling method was developed to simulate water-weakening effect on coal behaviour considering moisture content and water distribution. Three water distribution numerical models, namely surface-wetting model, core-wetting model and uniform-wetting model, were established to explore the water distribution influences. The feasibility and validity of the surface-wetting model were further demonstrated by comparing the simulation results with laboratory results. The investigation reveals that coal mechanical properties are affected by both water saturation coefficient and water distribution condition. For all water distribution models, micro-cracks always initiate and nucleate in the water-rich area and thus lead to distinct macro fracture characteristics. With the increase of water saturation coefficient, the failure of coal tends to be less violent with less cracks and ejected fragments. In addition, the core-wetting specimen is more sensitive to water than specimens with other water distribution models.

Aerostatic pressure of streamlined box girder based on conformal mapping method and its application

  • Wu, Lianhuo;Ju, J. Woody;Zhang, Mingjin;Li, Yongle;Qin, Jingxi
    • Wind and Structures
    • /
    • v.35 no.4
    • /
    • pp.243-253
    • /
    • 2022
  • The conformal mapping method (CMM) has been broadly exploited in the study of fluid flows over airfoils and other research areas, yet it's hard to find relevant research in bridge engineering. This paper explores the feasibility of CMM in streamlined box girder bridges. Firstly, the mapping function transforming a unit circle to the streamlined box girder was solved by CMM. Subsequently, the potential flow solution of aerostatic pressure on the streamlined box girder was obtained and was compared with numerical simulation results. Finally, the aerostatic pressure attained by CMM was utilized to estimate the aerostatic coefficient and flutter performance of the streamlined box girder. The results indicate that the solution of the aerostatic pressure by CMM on the windward side is satisfactory within a small angle of attack. Considering the windward aerostatic pressure and coefficient of correction, CMM can be employed to estimate the rate of change of the lift and moment coefficients with angle of attack and the influence of the geometric shape of the streamlined box girder on flutter performance.

High-Accuracy Coastdown Test Method by Distance-Time Measurement: II. Development of a Short Distance Method and its Evaluation (거리·시간 측정에 의한 고정도 타행시험법: II. 단거리 방법의 개발 및 시험)

  • Hur, N.G.;Ahn, I.K.;Petrushov, V.A.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.1-8
    • /
    • 1995
  • In the companion paper of the present paper, a coast down test method to determine the resistance forces on running vehicle based on the distance-time measurement was explained along with the suggestions to improve its accuracy and testing methodology. In the present paper some of the suggestions discussed previously are implemented and actually road tested to see the applicability of the improved method(short distance method) in the field. From the results. it is shown that the short distance method which requires only 600m long proving ground road gives at least comparable results on the accuracy compared to the original S-t method which requires 2000m. It is hoped that the present method be further refiend to give more accurate results.

  • PDF

Development of Three Dimensional Chloride Ion Penetration Model Based on Finite Element Method (유한요소법을 이용한 3차원 염해 침투 예측 모델의 개발)

  • Choi, Won;Kim, Hanjoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.43-49
    • /
    • 2015
  • Most of agricultural structures located in seashore could not avoid rapid deterioration of concrete because chloride-ion and $CO_2$ gradually penetrate into concrete. However, since most of models can be able to describe the phenomenon of penetration by using one or two dimensional models based on finite difference method (FDM), those modes can not simulate the real geometry and it takes a lot of computational time to complete even the calculation. To overcome those weaknesses, three dimensional numerical model considering time dependent variables such as surface concentration of chloride and diffusion coefficient of domain based on finite element method (FEM) was suggested. This model also included the neutralization occurred by the penetration of $CO_2$. Because the model used various sizes of tetrahedral mesh instead of equivalent rectangular mesh, it reduced the computational time to compare with FDM. As this model is based on FEM, it will be easily extended to execute multi-physics simulation including water evaporation and temperature change of concrete.

Temperature Effect on Impedance-based Damage Monitoring of Steel-Bolt Connection using Wireless Impedance Sensor Node (무선 임피던스 센서노드를 이용한 강-볼트 접합부의 임피던스기반 손상모니터링에 미치는 온도 영향)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • This paper presents the effect of temperature on the impedance-based damage monitoring of steel-bolt connections using wireless impedance sensor nodes. In order to achieve the objective, the following approaches are implemented. First, a temperature-compensated damage monitoring scheme that includes a temperature compensation model and damage detection method is described. The temperature compensation model is designed by analyzing the linear regressions between the temperatures and impedance signatures. The correlation coefficient of the impedance signatures is selected as the damage index to monitor the damage occurrence in the target structures. Second, a wireless impedance sensor node is described for the design of the hardware components and embedded software. Finally, the performance of the temperature-compensated impedance-based damage monitoring scheme is evaluated for detecting a loose bolt in the steel-bolt connections on a lab-scale steel girder under various temperatures.

Estimation of Glomerular Filtration Rate using Chromium-51 EDTA (Cr-51 EDTA GFR 검사 결과의 분석 및 의의)

  • Lim, Soo-Yeon;Moon, Hyoung-Ho;Yoo, Seon-Hee;Cho, Shee-Man
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.98-103
    • /
    • 2009
  • Purpose: Correct estimation of Glomerular filtration rate (GFR) is very important for an accurate clinical assessment of the kidney function. This study compares four GFR markers, a serum creatinine-based estimation using MDRD formula, Cystatin-C, Cr-51 EDTA 2 samples and 6 samples. Materials and Methods: Serum creatinine concentrations, Cystatin-C serum concentrations and Cr-51 EDTA clearance are measured in 43 patients who received or donated kidney. Results: The correlation coefficient between serum based estimated GFR (MDRD) and Cr-51 EDTA 6 samples was 0.817 (p<0.01). The correlation coefficient between Cystatin-C based GFR and EDTA 6 samples was 0.7322 (p<0.01). Regression analysis showed a statistically significant correlation between Cr-51 EDTA 2 samples and 6 samples (r=0.971, p<0.01). Mean value and ${\pm}2SD$ for the difference between Cr-51 EDTA 2 samples and 6 samples were 4.7 mL/min and ${\pm}9.3$ respectively. Conclusions: The estimation of two samples Cr-51 EDTA showed that the method can be simplified by reducing blood samples without losing its high accuracy.

  • PDF