• Title/Summary/Keyword: coefficient-based method

Search Result 2,698, Processing Time 0.038 seconds

Assessment of Site Environmental Factors on the Structure of Forest Vegetation in Naejang-san National Park Using Canonical Correlation Analysis (정준상관분석을 통한 내장산국립공원 산림식생구조의 입지환경 평가)

  • Kim, Tae-Geun;Cho, Young-Hwan;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.561-569
    • /
    • 2013
  • This study examines locational environment factors that may affect the vegetation structure in the forests of Naejang National Park. To that end, we selected LAI (Leaf Area Index), diameter at breast height, and tree height as structural variables as well as altitude above sea level, gradient, slope direction, soil moisture, topographic location, and amount of solar radiation as locational environment factors, using the method of canonical correlation analysis in order to find out correlation between them. As to the simple correlation between the locational environment factors and structural variables, the correlation coefficient was relatively low (0.6). The values of LAI, measured along the ridge with higher altitudes, decreased as the soil moisture and solar radiation increased. However, LAI increased as the gradient increased and the slope direction faced the north (farther from the east). In respect of the diameter at breast height, the diameter decreased as the altitude and gradient increased. But the diameter increased as the moisture and solar radiation increased. The tree height decreased as the moisture increased and the site was closer to the ridge. These various correlations show a variety of locational environment factors in the national park, implying that the structural variables are affected by complex locational environment factors. This study conducted a canonical correlation analysis on locational environment factors which may affect the vegetation structure, and the result showed that LAI increased and tree height & diameter at breast height decreased as the solar radiation & moisture decreased and altitude increased. Although more factors that may affect vegetation structure (e.g. climate) should be taken into account, this study is significant in that the vegetation structure, which can adapt to more unfavorable conditions in terms of solar radiation, moisture, and higher altitudes, could be inferred in a statistical way. The results of this study, especially the locational environment factors based on DEM, can be used for assessing diversity of vegetation structure in a forest and for monitoring the structure in a national park on a regular basis so as to establish more effective maintenance plans of a park.

Development of Solar Warehouse for Drying and Storing the Agricultural Products (농산물(農産物) 건조(乾燥) 및 저장(貯藏)을 위(爲)한 태양열(太陽熱) 저장고(貯藏庫)의 개발(開發)에 관(關)한 연구(硏究))

  • Kim, Man Soo;Chang, Kyu Seob;Kim, Soung Rai;Jeon, Byeong Seon
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.1
    • /
    • pp.357-370
    • /
    • 1982
  • Recent concern regarding price and availability of fossil fuels has spurred the interest in alternative sources for farm crop drying. Among the available options such as biomass energy, wind power, nuclear energy and solar energy etc., the increasing attention is being directed to the utilization of heat from solar energy especially for farm crop drying. Even though solar energy is dispersed over a large land area and only a relatively small amount of energy can be simply collected, the advantages of solar energy is that the energy is free, non-polluting. The study reported here was designed to help supply the informations for the development of simple and relatively inexpensive solar warehouse for farm crop drying and storage. Specifically, the objectives of this study were to determine the performance of the solar collector fabricated, to compare solar supplemented heat drying with natural air drying and to develop a simulation model of temperature in stored grain, which can be used to study the effects due to changes in ambient air temperature. For those above objectives, solar collector was fabricated from available materials. Corrugated steel galvanized sheet, painted flat black, was used as absorbers and clear 0.2mm polyethylene sheet was the cover material. The warehouse for rough rice drying and storage was constructed with concrete block, and the solar collector was used as the roof of warehouse instead of original roofing system of it. The results obtained in this study were as follows: 1. The thermal efficiency of the solar collector was average 26 percent and the overall heat transfer coefficient of the collector was approximately $25kJ/hr.m^2\;^{\circ}K$. 2. Solar heated air was sufficient to dry one cubic meter of rough rice from 23.5 to 15.0 percent in 7 days and natural air was able to dry the same amount of rough rice from 20.0 to 5 percent in l2 days. 3. Drying with solar heat reduced the required drying time to dry the same amount of rough rice into a half compared to natural air drying, but overdrying problems of the bottom layer were so severe that these problems should be thoroughly analyzed. 4. Simulation model of temperature in stored grain was developed and the results of predicted temperature agreed well with test results. 5. Based on those simulated temperature, changes in the grain-temperature were a large at the points of the wallside and the damage of the grain would be severe at the contact area of wall.

  • PDF

Genomic selection through single-step genomic best linear unbiased prediction improves the accuracy of evaluation in Hanwoo cattle

  • Park, Mi Na;Alam, Mahboob;Kim, Sidong;Park, Byoungho;Lee, Seung Hwan;Lee, Sung Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1544-1557
    • /
    • 2020
  • Objective: Genomic selection (GS) is becoming popular in animals' genetic development. We, therefore, investigated the single-step genomic best linear unbiased prediction (ssGBLUP) as tool for GS, and compared its efficacy with the traditional pedigree BLUP (pedBLUP) method. Methods: A total of 9,952 males born between 1997 and 2018 under Hanwoo proven-bull selection program was studied. We analyzed body weight at 12 months and carcass weight (kg), backfat thickness, eye muscle area, and marbling score traits. About 7,387 bulls were genotyped using Illumina 50K BeadChip Arrays. Multiple-trait animal model analyses were performed using BLUPF90 software programs. Breeding value accuracy was calculated using two methods: i) Pearson's correlation of genomic estimated breeding value (GEBV) with EBV of all animals (rM1) and ii) correlation using inverse of coefficient matrix from the mixed-model equations (rM2). Then, we compared these accuracies by overall population, info-type (PHEN, phenotyped-only; GEN, genotyped-only; and PH+GEN, phenotyped and genotyped), and bull-types (YBULL, young male calves; CBULL, young candidate bulls; and PBULL, proven bulls). Results: The rM1 estimates in the study were between 0.90 and 0.96 among five traits. The rM1 estimates varied slightly by population and info-type, but noticeably by bull-type for traits. Generally average rM2 estimates were much smaller than rM1 (pedBLUP, 0.40 to0.44; ssGBLUP, 0.41 to 0.45) at population level. However, rM2 from both BLUP models varied noticeably across info-types and bull-types. The ssGBLUP estimates of rM2 in PHEN, GEN, and PH+ GEN ranged between 0.51 and 0.63, 0.66 and 0.70, and 0.68 and 0.73, respectively. In YBULL, CBULL, and PBULL, the rM2 estimates ranged between 0.54 and 0.57, 0.55 and 0.62, and 0.70 and 0.74, respectively. The pedBLUP based rM2 estimates were also relatively lower than ssGBLUP estimates. At the population level, we found an increase in accuracy by 2.0% to 4.5% among traits. Traits in PHEN were least influenced by ssGBLUP (0% to 2.0%), whereas the highest positive changes were in GEN (8.1% to 10.7%). PH+GEN also showed 6.5% to 8.5% increase in accuracy by ssGBLUP. However, the highest improvements were found in bull-types (YBULL, 21% to 35.7%; CBULL, 3.3% to 9.3%; PBULL, 2.8% to 6.1%). Conclusion: A noticeable improvement by ssGBLUP was observed in this study. Findings of differential responses to ssGBLUP by various bulls could assist in better selection decision making as well. We, therefore, suggest that ssGBLUP could be used for GS in Hanwoo proven-bull evaluation program.

The Acceptance Testing of 5 Mega Pixels Primary Electronic Display Devices and the Study of Quality Control Guideline Suitable for Domestic Circumstance (5 Mega 화소 진단용 전자표시장치 인수검사 및 국내 실정에 적합한 정도관리 가이드라인 연구)

  • Jung, Hai-Jo;Kim, Hee-Joung;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.98-106
    • /
    • 2007
  • In June 2005, Yonsei University Medical Center, Severance Hospital upgraded a full-PACS system by adding twenty (5 mega pixels) Totoku ME511L flat panel LCD display devices for diagnostic interpretation purposes. Here we report upon the quantitative (or visual) acceptance testing of the twenty Totoku ME511L display devices for reflection, luminance response, luminance spatial dependency, resolution, noise, veiling glare, and display chromaticity based on AAPM TG 18 report. The tools used in the tests included a telescopic photometer, which was used as a colorimeter, illuminance meter, light sources for reflection assessment, light-blocking devices, and digital TG18 test patterns. For selected 8 flat panel displays, mean diffuse reflection coefficient ($R_d$) was $0.019{\pm}0.02sr^{-1}$. In the luminance response test, luminance ratio (LR), maximum luminance difference ($L_{max}$), and deviation of contrast response were $550{\pm}100,\;2.0{\pm}1.9%\;and\;5.8{\pm}1.8%$, respectively. In the luminance uniformity test, maximum luminance deviation was $14.3{\pm}5.5%$ for the 10% luminance of the TG18-UNL10 test pattern. In the resolution test with luminance measurement method, percent luminance (${\Dalta}L$) at the center was $0.94{\pm}0.64%$. In all cases of noise testing, rectangular target In every square in the three quadrants was visible and all 15 targets except the smallest one in the every corner pattern and the center pattern. The glare ratio (GR) was $12,346{\pm}1,995$. The color uniformity, (u',v'), was $0.0025{\pm}0.0008$. Also, the research results of qualify control guideline of primary disply devices suitable for domestic circumstance are presented All test results are in-line with the criteria recommended by AAPM TG18 report and are thus fully acceptable for diagnostic image interpretation. As a result, the acceptance testing schedule described provides not only an acceptance standard but also guidelines for quality control, optimized viewing conditions, and a means for determining the upgrading time of LCD display devices for diagnostic interpretation.

  • PDF

Residual Characteristics of Bistrifluron and Chlorantraniliprole in Strawberry (Fragaria ananassa Duch.) for Establishing Pre-Harvest Residue Limit (생산단계 잔류허용기준 설정을 위한 딸기 중 bistrifluron과 chlorantraniliprole의 잔류 특성 연구)

  • Lee, Jae Won;Kim, Ji Yoon;Kim, Hee gon;Hur, Kyung Jin;Kwon, Chan Hyeok;Hur, Jang Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.57-62
    • /
    • 2017
  • BACKGROUND: Pesticide residue analysis is essentially required for safety evaluation of agricultural products. Bistrifluron and chlorantraniliprole have been currently considered as potentials to deeply evaluate their residues in agricultural products because they are frequently found in strawberry. This work was performed to investigate the residual patterns of bistrifluron and chlorantraniliprole in strawberry after harvest. METHODS AND RESULTS: Strawberry was treated with bistrifluron and chlorantraniliprole 0, 1, 2, 3, 5, 7 and 10 days before harvest under greenhouse conditions. The strawberry samples were subjected to solvent and solid phase extractions followed by LC-MS/MS analysis. There covery percentages of bistrifluron and chlorantraniliprole for tified in the control samples ranged from approximately 82 to 103% with the method limit of 0.005 mg/kg. The concentrations of bistrifluron and chlorantraniliprole in strawberry samples decreased significantly in 10 days after treatment, giving the safety levels of 0.04 to 0.06 mg/kg at 10 days after application, as considered maximum residue limit. The half-lives of bistrifluron and chlorantraniliprole based on first order kinetics were determined to 6.3 days and 6.4 days, respectively. CONCLUSION: Bistrifluron and chlorantraniliprole are suggested to use in strawberry 10 days before harvest to reach residual safety levels.

Monitoring and Risk Assessment of Pesticide Residues on Stalk and Stem Vegetables Marketed in Incheon Metropolitan Area (인천광역시 유통 엽경채류 농산물의 잔류농약 실태조사 및 위해성 평가)

  • Park, Byung-Kyu;Jung, Seung-Hye;Kwon, Sung-Hee;Ye, Eun-Young;Lee, Han-Jung;Seo, Soon-Jae;Joo, Kwang-Sig;Heo, Myung-Je
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.4
    • /
    • pp.365-374
    • /
    • 2020
  • This study was conducted to monitor the residual pesticides on a total of 320 stalk and stem vegetables from January 2019 to December 2019 in the Incheon metropolitan area. Pesticide residues in samples were analyzed by the multi-residue method for 373 pesticides using GC-MS/MS, LC-MS/MS, GC-ECD, GC-NPD and HPLC-UVD. Risk assessment was also carried out based on the amount of stalk and stem vegetables consumed. The linearity correlation coefficient for the calibration curve was 0.9951 to 1.0000, LOD 0.002 to 0.022 mg/kg, LOQ 0.005 to 0.066 mg/kg and recovery was 82.0 to 108.0%. According to the monitoring of pesticides, 36 (11.3%) of 320 were detected with pesticide residues and 3 (0.9%) samples exceeded the maximum residual limit. The detection frequency for Chinese chives and Welsh onion was higher than that for other stalk and stem vegetables. The frequently detected pesticides were etofenprox, procymidone, fludioxonil, and pendimethalin. As a tool of risk assessment through the consumption of pesticide detectable agricultural products, the ratio of estimated daily intake (EDI) to acceptable daily intake (ADI) was calculated in the range of 0.0062-24.1423%. These results indicate that there is no particular health risk through consumption of commercial stalk and stem vegetables detected with pesticide residues.

Water Transport Characteristics of Paddy Plow Pan Soils as Estimated by Particle Size Distribution Fractal Dimension (토양입자분포 프랙탈차원을 활용한 논토양 쟁기바닥층 물이동 추정)

  • Han, Kyung-Hwa;Cho, Hyun-Jun;Hur, Seung-Oh;Ha, Sang-Geun;Cho, Hee-Rae;Jeon, Sang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • This study was carried out to investigate plow pan characteristics and to grasp the relationship between its particle size distribution fractal dimension ($D_m$) and water transport in paddy plow pan. Twenty four soil sampling sites with different management groups, ordinary and sandy-textured, were selected and investigated for physical properties of soils such as Yamanaka hardness in April, non-submerged condition, before rice seedling transplanting. The plow pan appearing depth and thickness was determined by penetration resistance profile. Undisturbed core samples with five replicates were sampled at plow pan layerwith 2 inch cores for measuring soil bulk density and saturated hydraulic conductivity. The particle size distribution fractal dimension ($D_m$) was calculated by the method following the procedure Tylerand Wheacraft (1992), using the USDA-based particle size analysis datawith fractions of 0-0.002, 0.002-0.053, 0.053-0.1, 0.1-0.25, 0.25-0.5, 0.5-1.0, and 1.0-2.0 mm. The plow pan of investigated fields appeared at a range from 5 to 30 cm depth, showing minimum value in sandy-textured management group and maximum value in ordinary management group. The thickness of plow pan were distributed from 5 to 17 cm, showing both minimum and maximum values in sandy-textured management group. Averagely, the plow appearing depth were deeper in ordinary management group than in sandy-textured management group, whereas the reverse in the thickness of plow pan. The particle size distribution fractal dimension ($D_m$) had higher value with finer textures, with higher fractality in coarser texture. Saturated hydraulic conductivities, $K_s$, of plow pan soils distributed from 0.5 to 1420 mm $day^{-1}$, having the highest value in sandy skeletal soils. The $K_s$ decreased with decreasing clay content and $D_m$, showing power function relationships. The coefficient of determination, $R^2$, of the fitted power functions were higher in $D_m$ as x-axis than in clay content. This means that $D_m$ could give us more effective estimation than clay content. Especially, sandy-textured paddy soils had higher $R^2$, compared to ordinary paddy soils. $K_s$ of relatively coarse-textured soils with less than 18%of clay content, therefore, was more dependent on particle size distribution than that of relatively fine-textured soils. From these results, it could be concluded that the fractal scaling gives us a unique quantity describing particle size distribution and then can be applied to estimate saturated hydraulic conductivity, especially more effective in coarse-textured soils.

The Plants Social Network through the Analysis of the Plant Community Structure and the Social Network - Conducted in Mudeungsan National Park - (식물군락구조와 사회연결망분석을 통한 식물사회네트워크 분석 - 무등산국립공원을 대상으로 -)

  • Jang, Jung-Eun;Lee, Sang-Cheol;Kang, Hyun-Mi;Yu, Seung-Bong;Shin, Hae-Seon;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.2
    • /
    • pp.164-180
    • /
    • 2021
  • Plants Social Network(PSN) analysis combines the plant sociological method and the social network analysis to understand plant society focusing on environmental-to-plant and plant-to-plant relationships. PSN is at an early stage of research and require comparing plant society analyses in various environments and existing interspecies binding analysis. This study conducted a vegetation structural analysis of Mudeungsan National Park and compared the existing interspecies connection analysis with the PSN. A total of 60 plots were established for a survey on the Old Trail. The TWINSPAN and DCA analysis showed that the 60 survey plots were divided into the Quercus serrata-Pinus densiflora community (Community I) and the Quercus mongolica community (Community II) based on an altitude of 800 meters. We performed the interspecies correlation with more than 30% emergence frequency and the DCA analysis and compared the results with a focus on the major species in each colony. The results showed that Quercus serrata had a correlation of -0.450** and -0.375** with Pinus densiflora and Quercus mongolica, respectively. The DCA analysis also confirmed that Quercus serrata was located close to Pinus densiflora and far from Quercus mongolica along one axis. For the PSN analysis of PSN, 40 survey plots were added to investigate the species appearing in a total of 100 survey plots. The network structural analysis showed 378 links and a species having an average of 6 interspecies bindings. The density was 0.097, the diameter was 7, and the average path distance was 2.788, similar to the PSN analysis results of the Busan Metropolitan City. The plant social network analysis showed similar results to the existing interspecies combination analysis, enabling analyzing more data than the existing methods and observing the structure of plant society.

Monitoring and Risk Assessment of Pesticide Residues in School Foodservice Agricultural Products in Gwangju Metropolitan Area (광주광역시 학교급식 농산물의 잔류농약 모니터링 및 위해평가)

  • Kim, Jinhee;Lee, Davin;Lee, Mingyou;Ryu, Keunyoung;Kim, Taesun;Gang, Gyungri;Seo, Kyewon;Kim, Jung-Beom
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.283-289
    • /
    • 2019
  • This study was performed to monitor the residual pesticides in agricultural products used in school foodservice in the Gwangju metropolitan area. Risk assessment was also carried out based on the amount of agricultural products consumed. A total of 320 agricultural products supplied to schools in Gwangju were analyzed from 2015 to 2017. The pre-treatment and residual pesticide analysis of these products was conducted in accordance with the second method for multi-residue analysis of pesticides in the Korean food code. The hazard index was calculated by dividing the estimated daily intake (EDI) of pesticides by the acceptable daily intake (ADI). The linearity correlation coefficient for the calibration curve was 0.9923 to 1.0000, LOD 0.004 to 0.019 mg/kg, LOQ 0.012 to 0.057 mg/kg, and recovery was 79.1 to 100.2%. Residual pesticides were detected in 18 (5.6%) of 320 agricultural products used for school foodservice, and one sample of sweet potato stem (0.3%) exceeded the maximum residual limit (MRL). The detection frequency for chili peppers and bell peppers was higher than that for other agricultural products. The frequently-detected pesticides were boscalid and acetamiprid. These results showed that residual pesticide management is needed for chili pepper, bell pepper and sweet potato stem among agricultural products supplied to schools. The hazard index of bifenthrin in sweet potato stem showed the highest (64.18%), and the other pesticides were 0.03-8.23%. These results indicated that agricultural products supplied to schools in Gwangju were safe for consumption. To minimize the intake of residual pesticides, it is necessary to not only thoroughly wash agricultural products but to also ensure the expanded supply of products that are pesticide-free.

Comparisons of Soil Water Retention Characteristics and FDR Sensor Calibration of Field Soils in Korean Orchards (노지 과수원 토성별 수분보유 특성 및 FDR 센서 보정계수 비교)

  • Lee, Kiram;Kim, Jongkyun;Lee, Jaebeom;Kim, Jongyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.401-408
    • /
    • 2022
  • As research on a controlled environment system based on crop growth environment sensing for sustainable production of horticultural crops and its industrial use has been important, research on how to properly utilize soil moisture sensors for outdoor cultivation is being actively conducted. This experiment was conducted to suggest the proper method of utilizing the TEROS 12, an FDR (frequency domain reflectometry) sensor, which is frequently used in industry and research fields, for each orchard soil in three regions in Korea. We collected soils from each orchard where fruit trees were grown, investigated the soil characteristics and soil water retention curve, and compared TEROS 12 sensor calibration equations to correlate the sensor output to the corresponding soil volumetric water content through linear and cubic regressions for each soil sample. The estimated value from the calibration equation provided by the manufacturer was also compared. The soil collected from all three orchards showed different soil characteristics and volumetric water content values by each soil water retention level across the soil samples. In addition, the cubic calibration equation for TEROS 12 sensor showed the highest coefficient of determination higher than 0.95, and the lowest RMSE for all soil samples. When estimating volumetric water contents from TEROS 12 sensor output using the calibration equation provided by the manufacturer, their calculated volumetric water contents were lower than the actual volumetric water contents, with the difference up to 0.09-0.17 m3·m-3 depending on the soil samples, indicating an appropriate calibration for each soil should be preceded before FDR sensor utilization. Also, there was a difference in the range of soil volumetric water content corresponding to the soil water retention levels across the soil samples, suggesting that the soil water retention information should be required to properly interpret the volumetric water content value of the soil. Moreover, soil with a high content of sand had a relatively narrow range of volumetric water contents for irrigation, thus reducing the accuracy of an FDR sensor measurement. In conclusion, analyzing soil water retention characteristics of the target soil and the soil-specific calibration would be necessary to properly quantify the soil water status and determine their adequate irrigation point using an FDR sensor.