• Title/Summary/Keyword: coefficient-based method

Search Result 2,705, Processing Time 0.029 seconds

Evaluation of Sensitivity and Retrieval Possibility of Land Surface Temperature in the Mid-infrared Wavelength through Radiative Transfer Simulation (복사전달모의를 통한 중적외 파장역의 민감도 분석 및 지표면온도 산출 가능성 평가)

  • Choi, Youn-Young;Suh, Myoung-Seok;Cha, DongHwan;Seo, DooChun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1423-1444
    • /
    • 2022
  • In this study, the sensitivity of the mid-infrared radiance to atmospheric and surface factors was analyzed using the radiative transfer model, MODerate resolution atmospheric TRANsmission (MODTRAN6)'s simulation data. The possibility of retrieving the land surface temperature (LST) using only the mid-infrared bands at night was evaluated. Based on the sensitivity results, the LST retrieval algorithm that reflects various factors for night was developed, and the level of the LST retrieval algorithm was evaluated using reference LST and observed LST. Sensitivity experiments were conducted on the atmospheric profiles, carbon dioxide, ozone, diurnal variation of LST, land surface emissivity (LSE), and satellite viewing zenith angle (VZA), which mainly affect satellite remote sensing. To evaluate the possibility of using split-window method, the mid-infrared wavelength was divided into two bands based on the transmissivity. Regardless of the band, the top of atmosphere (TOA) temperature is most affected by atmospheric profile, and is affected in order of LSE, diurnal variation of LST, and satellite VZA. In all experiments, band 1, which corresponds to the atmospheric window, has lower sensitivity, whereas band 2, which includes ozone and water vapor absorption, has higher sensitivity. The evaluation results for the LST retrieval algorithm using prescribed LST showed that the correlation coefficient (CC), the bias and the root mean squared error (RMSE) is 0.999, 0.023K and 0.437K, respectively. Also, the validation with 26 in-situ observation data in 2021 showed that the CC, bias and RMSE is 0.993, 1.875K and 2.079K, respectively. The results of this study suggest that the LST can be retrieved using different characteristics of the two bands of mid-infrared to the atmospheric and surface conditions at night. Therefore, it is necessary to retrieve the LST using satellite data equipped with sensors in the mid-infrared bands.

Development of Rope Winding Device for Safety Fishing Operation of Small Trap Fishing Vessel (소형 통발어선의 안전조업을 위한 로프 권양장치 연구)

  • Kim, Dae-Jin;Jang, Duck-Jong;Park, Ju-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.19-29
    • /
    • 2022
  • The result of a questionnaire survey conducted on fishermen using coastal fish traps shows that fall accidents during trap dropping and pulling constitute the highest proportion of accidents at 42.1 %, whereas slipping accidents on the deck or stricture accidents to the body due to the trap winding device constitute 21.1 % each. In addition, 53.2 % of all surveyed subjects responded that trap pulling is the most dangerous task, followed by fish sorting 33.8 %, and trap dropping 9.1 %. As for the main items requested by fishermen for improving the trap winding device, 36.8 % indicated a method to easily lift the trap from the water to the work deck, and 31.6 % indicated a method to overcome the rope tension and prevent slip when pulling the trap to reduce the accidents. The small trap fishing vessel winding device proposed herein can increase the winding force by strengthening the rope contact area and friction coefficient via an appropriate contact angle between the driving roller of the winding device and the rope. When the contact angles between the driving roller and the rope are 1°, 5°, 9°, 14° and 19°, the rope tension showed a difference according to each contact angle. When the contact angle is 9°, the rope tension is the highest at 392.62 kgf. Based on these experimental results, a prototype winding device is manufactured, and 25 traps are installed on a rope with a total length of 100 m at 4 m intervals in the sea, and then the rope tension is measured during trap pulling. As a result, the rope tension increases rapidly at the initial stage of trap pulling and shows the highest value of 31.89 kgf, which subsequently decreases significantly. Therefore, it is appropriate to design the winding force of a small trap fishing vessel winding device based on the maximum tension value of the rope specified at the beginning of the trap pulling operation.

Mathematical Transformation Influencing Accuracy of Near Infrared Spectroscopy (NIRS) Calibrations for the Prediction of Chemical Composition and Fermentation Parameters in Corn Silage (수 처리 방법이 근적외선분광법을 이용한 옥수수 사일리지의 화학적 조성분 및 발효품질의 예측 정확성에 미치는 영향)

  • Park, Hyung-Soo;Kim, Ji-Hye;Choi, Ki-Choon;Kim, Hyeon-Seop
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.1
    • /
    • pp.50-57
    • /
    • 2016
  • This study was conducted to determine the effect of mathematical transformation on near infrared spectroscopy (NIRS) calibrations for the prediction of chemical composition and fermentation parameters in corn silage. Corn silage samples (n=407) were collected from cattle farms and feed companies in Korea between 2014 and 2015. Samples of silage were scanned at 1 nm intervals over the wavelength range of 680~2,500 nm. The optical data were recorded as log 1/Reflectance (log 1/R) and scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with several spectral math treatments to reduce the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation ($R^2{_{cv}}$) and the lowest standard error of cross validation (SECV). Results of this study revealed that the NIRS method could be used to predict chemical constituents accurately (correlation coefficient of cross validation, $R^2{_{cv}}$, ranging from 0.77 to 0.91). The best mathematical treatment for moisture and crude protein (CP) was first-order derivatives (1, 16, 16, and 1, 4, 4), whereas the best mathematical treatment for neutral detergent fiber (NDF) and acid detergent fiber (ADF) was 2, 16, 16. The calibration models for fermentation parameters had lower predictive accuracy than chemical constituents. However, pH and lactic acids were predicted with considerable accuracy ($R^2{_{cv}}$ 0.74 to 0.77). The best mathematical treatment for them was 1, 8, 8 and 2, 16, 16, respectively. Results of this experiment demonstrate that it is possible to use NIRS method to predict the chemical composition and fermentation quality of fresh corn silages as a routine analysis method for feeding value evaluation to give advice to farmers.

A Study of Intangible Cultural Heritage Communities through a Social Network Analysis - Focused on the Item of Jeongseon Arirang - (소셜 네트워크 분석을 통한 무형문화유산 공동체 지식연결망 연구 - 정선아리랑을 중심으로 -)

  • Oh, Jung-shim
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.3
    • /
    • pp.172-187
    • /
    • 2019
  • Knowledge of intangible cultural heritage is usually disseminated through word-of-mouth and actions rather than written records. Thus, people assemble to teach others about it and form communities. Accordingly, to understand and spread information about intangible cultural heritage properly, it is necessary to understand not only their attributes but also a community's relational characteristics. Community members include specialized transmitters who work under the auspices of institutions, and general transmitters who enjoy intangible cultural heritage in their daily lives. They converse about intangible cultural heritage in close relationships. However, to date, research has focused only on professionals. Thus, this study focused on the roles of general transmitters of intangible cultural heritage information by investigating intangible cultural heritage communities centering around Jeongseon Arirang; a social network analysis was performed. Regarding the research objectives presented in the introduction, the main findings of the study are summarized as follows. First, there were 197 links between 74 members of the Jeongseon Arirang Transmission Community. One individual had connections with 2.7 persons on average, and all were connected through two steps in the community. However, the density and the clustering coefficient were low, 0.036 and 0.32, respectively; therefore, the cohesiveness of this community was low, and the relationships between the members were not strong. Second, 'Young-ran Yu', 'Nam-gi Kim' and 'Gil-ja Kim' were found to be the prominent figures of the Jeongseon Arirang Transmission Community, and the central structure of the network was concentrated around these three individuals. Being located in the central structure of the network indicates that a person is popular and ranked high. Also, it means that a person has an advantage in terms of the speed and quantity of the acquisition of information and resources, and is in a relatively superior position in terms of bargaining power. Third, to understand the replaceability of the roles of Young-ran Yu, Nam-gi Kim, and Gil-ja Kim, who were found to be the major figures through an analysis of the central structure, structural equivalence was profiled. The results of the analysis showed that the positions and roles of Young-ran Yu, Nam-gi Kim, and Gil-ja Kim were unrivaled and irreplaceable in the Jeongseon Arirang Transmission Community. However, considering that these three members were in their 60s and 70s, it seemed that it would be necessary to prepare measures for the smooth maintenance and operation of the community. Fourth, to examine the subgroup hidden in the network of the Jeongseon Arirang Transmission Community, an analysis of communities was conducted. A community refers to a subgroup clearly differentiated based on modularity. The results of the analysis identified the existence of four communities. Furthermore, the results of an analysis of the central structure showed that the communities were formed and centered around Young-ran Yu, Hyung-jo Kim, Nam-gi Kim, and Gil-ja Kim. Most of the transmission TAs recommended by those members, students who completed a course, transmission scholarship holders, and the general members taught in the transmission classes of the Jeongseon Arirang Preservation Society were included as members of the communities. Through these findings, it was discovered that it is possible to maintain the transmission genealogy, making an exchange with the general members by employing the present method for the transmission of Jeongseon Arirang, the joint transmission method. It is worth paying attention to the joint transmission method as it overcomes the demerits of the existing closed one-on-one apprentice method and provides members with an opportunity to learn their masters' various singing styles. This study is significant for the following reasons: First, by collecting and examining data using a social network analysis method, this study analyzed phenomena that had been difficult to investigate using existing statistical analyses. Second, by adopting a different approach to the previous method in which the genealogy was understood, looking at oral data, this study analyzed the structures of the transmitters' relationships with objective and quantitative data. Third, this study visualized and presented the abstract structures of the relationships among the transmitters of intangible cultural heritage information on a 2D spring map. The results of this study can be utilized as a baseline for the development of community-centered policies for the protection of intangible cultural heritage specified in the UNESCO Convention for the Safeguarding of Intangible Cultural Heritage. To achieve this, it would be necessary to supplement this study through case studies and follow-up studies on more aspects in the future.

Application of Hyperspectral Imagery to Decision Tree Classifier for Assessment of Spring Potato (Solanum tuberosum) Damage by Salinity and Drought (초분광 영상을 이용한 의사결정 트리 기반 봄감자(Solanum tuberosum)의 염해 판별)

  • Kang, Kyeong-Suk;Ryu, Chan-Seok;Jang, Si-Hyeong;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Lee, Su Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.317-326
    • /
    • 2019
  • Salinity which is often detected on reclaimed land is a major detrimental factor to crop growth. It would be advantageous to develop an approach for assessment of salinity and drought damages using a non-destructive method in a large landfills area. The objective of this study was to examine applicability of the decision tree classifier using imagery for classifying for spring potatoes (Solanum tuberosum) damaged by salinity or drought at vegetation growth stages. We focused on comparing the accuracies of OA (Overall accuracy) and KC (Kappa coefficient) between the simple reflectance and the band ratios minimizing the effect on the light unevenness. Spectral merging based on the commercial band width with full width at half maximum (FWHM) such as 10 nm, 25 nm, and 50 nm was also considered to invent the multispectral image sensor. In the case of the classification based on original simple reflectance with 5 nm of FWHM, the selected bands ranged from 3-13 bands with the accuracy of less than 66.7% of OA and 40.8% of KC in all FWHMs. The maximum values of OA and KC values were 78.7% and 57.7%, respectively, with 10 nm of FWHM to classify salinity and drought damages of spring potato. When the classifier was built based on the band ratios, the accuracy was more than 95% of OA and KC regardless of growth stages and FWHMs. If the multispectral image sensor is made with the six bands (the ratios of three bands) with 10 nm of FWHM, it is possible to classify the damaged spring potato by salinity or drought using the reflectance of images with 91.3% of OA and 85.0% of KC.

Evaluation Criteria and Preferred Image of Jeans Products based on Benefit Segmentation (진 제품 구매자의 추구혜택에 따른 평가기준 및 선호 이미지)

  • Park, Na-Ri;Park, Jae-Ok
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.6 s.165
    • /
    • pp.974-984
    • /
    • 2007
  • The purpose of this study was to find differences in evaluation criteria and to find differences in preferred images based on benefits segmented groups of jeans products consumers. Male and female Korean university students participated in the study. Quota sampling method was used to collect the data based on gender and a residential area of the respondents. Data from 492 questionnaires were used in the analysis. Factor analysis, Cronbach's alpha coefficient, cluster analysis, one-way ANOVA, and post-hoc test were conducted. As a result, respondents who seek multi-benefits considered aesthetic criteria(e.g., color, style, design, fit) and quality performance criteria(e.g., durability, ease of care, contractibility, flexibility) more importantly when evaluating and purchasing jeans products. Respondents who seek brand name considered extrinsic criteria(e.g., brand reputation, status symbol, country of origin, fashionability) more importantly than respondents who seek economic efciency. Respondents who seek multi-benefits such as attractiveness, fashion, individuality, and utility tend to prefer all the images: individual image, active image, sexual image, sophisticated image, and simple image when wearing jeans products. Respondents who seek fashion are likely to prefer individual image, and respondents who seek brand name more prefer both individual image and polished image. Mean while, respondents who seek economical efficiency less prefer sexual image and polished image.

Surrogate Model-Based Global Sensitivity Analysis of an I-Shape Curved Steel Girder Bridge under Seismic Loads (지진하중을 받는 I형 곡선거더 단경간 교량의 대리모델 기반 전역 민감도 분석)

  • Jun-Tai, Jeon;Hoyoung Son;Bu-Seog, Ju
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.976-983
    • /
    • 2023
  • Purpose: The dynamic behavior of a bridge structure under seismic loading depends on many uncertainties, such as the nature of the seismic waves and the material and geometric properties. However, not all uncertainties have a significant impact on the dynamic behavior of a bridge structure. Since probabilistic seismic performance evaluation considering even low-impact uncertainties is computationally expensive, the uncertainties should be identified by considering their impact on the dynamic behavior of the bridge. Therefore, in this study, a global sensitivity analysis was performed to identify the main parameters affecting the dynamic behavior of bridges with I-curved girders. Method: Considering the uncertainty of the earthquake and the material and geometric uncertainty of the curved bridge, a finite element analysis was performed, and a surrogate model was developed based on the analysis results. The surrogate model was evaluated using performance metrics such as coefficient of determination, and finally, a global sensitivity analysis based on the surrogate model was performed. Result: The uncertainty factors that have the greatest influence on the stress response of the I-curved girder under seismic loading are the peak ground acceleration (PGA), the height of the bridge (h), and the yield stress of the steel (fy). The main effect sensitivity indices of PGA, h, and fy were found to be 0.7096, 0.0839, and 0.0352, respectively, and the total sensitivity indices were found to be 0.9459, 0.1297, and 0.0678, respectively. Conclusion: The stress response of the I-shaped curved girder is dominated by the uncertainty of the input motions and is strongly influenced by the interaction effect between each uncertainty factor. Therefore, additional sensitivity analysis of the uncertainty of the input motions, such as the number of input motions and the intensity measure(IM), and a global sensitivity analysis considering the structural uncertainty, such as the number and curvature of the curved girders, are required.

Gap-Filling of Sentinel-2 NDVI Using Sentinel-1 Radar Vegetation Indices and AutoML (Sentinel-1 레이더 식생지수와 AutoML을 이용한 Sentinel-2 NDVI 결측화소 복원)

  • Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Myoungsoo Won;Junghwa Chun;Kyungmin Kim;Keunchang Jang;Joongbin Lim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1341-1352
    • /
    • 2023
  • The normalized difference vegetation index (NDVI) derived from satellite images is a crucial tool to monitor forests and agriculture for broad areas because the periodic acquisition of the data is ensured. However, optical sensor-based vegetation indices(VI) are not accessible in some areas covered by clouds. This paper presented a synthetic aperture radar (SAR) based approach to retrieval of the optical sensor-based NDVI using machine learning. SAR system can observe the land surface day and night in all weather conditions. Radar vegetation indices (RVI) from the Sentinel-1 vertical-vertical (VV) and vertical-horizontal (VH) polarizations, surface elevation, and air temperature are used as the input features for an automated machine learning (AutoML) model to conduct the gap-filling of the Sentinel-2 NDVI. The mean bias error (MAE) was 7.214E-05, and the correlation coefficient (CC) was 0.878, demonstrating the feasibility of the proposed method. This approach can be applied to gap-free nationwide NDVI construction using Sentinel-1 and Sentinel-2 images for environmental monitoring and resource management.

Analysis of Waterbody Changes in Small and Medium-Sized Reservoirs Using Optical Satellite Imagery Based on Google Earth Engine (Google Earth Engine 기반 광학 위성영상을 이용한 중소규모 저수지 수체 변화 분석)

  • Younghyun Cho;Joonwoo Noh
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.363-375
    • /
    • 2024
  • Waterbody change detection using satellite images has recently been carried out in various regions in South Korea, utilizing multiple types of sensors. This study utilizes optical satellite images from Landsat and Sentinel-2 based on Google Earth Engine (GEE) to analyze long-term surface water area changes in four monitored small and medium-sized water supply dams and agricultural reservoirs in South Korea. The analysis covers 19 years for the water supply dams and 27 years for the agricultural reservoirs. By employing image analysis methods such as normalized difference water index, Canny Edge Detection, and Otsu'sthresholding for waterbody detection, the study reliably extracted water surface areas, allowing for clear annual changes in waterbodies to be observed. When comparing the time series data of surface water areas derived from satellite images to actual measured water levels, a high correlation coefficient above 0.8 was found for the water supply dams. However, the agricultural reservoirs showed a lower correlation, between 0.5 and 0.7, attributed to the characteristics of agricultural reservoir management and the inadequacy of comparative data rather than the satellite image analysis itself. The analysis also revealed several inconsistencies in the results for smaller reservoirs, indicating the need for further studies on these reservoirs. The changes in surface water area, calculated using GEE, provide valuable spatial information on waterbody changes across the entire watershed, which cannot be identified solely by measuring water levels. This highlights the usefulness of efficiently processing extensive long-term satellite imagery data. Based on these findings, it is expected that future research could apply this method to a larger number of dam reservoirs with varying sizes,shapes, and monitoring statuses, potentially yielding additional insights into different reservoir groups.

A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm (Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구)

  • Jung, Ye Lim;Kim, Ji Hui;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.