• Title/Summary/Keyword: coefficient-based method

Search Result 2,698, Processing Time 0.033 seconds

Development of the Optimal Performance Based Seismic Design Method for 2D Steel Moment Resisting Frames (2차원 철골 구조물의 최적 성능기반 내진설계법 개발)

  • Kwon Bong-Keun;Lee Hyun-Kook;Kwon Yun-Man;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.636-643
    • /
    • 2005
  • Recently, performance based seismic design (PBSD) methods have been suggested in numerous forms and widely studied as a new concept of seismic design. The PBDSs are far from being practical method due to complexity of algorithms resided in the design philosophy. In this paper, optimal seismic design method based on displacement coefficient method (DCM) described in FEMA 273 is developed. As an optimizer simple genetic algorithms are used for implementations. In the optimization problem formulated in this Paper, strength design criteria stiffness design criteria, and nonlinear response criteria specified in DCM are included in design constraints. The optimal performance based design(OPBD) method is applied to seismic design of a 3-story two-dimensional steel frame structures.

  • PDF

Thangka Image Inpainting Algorithm Based on Wavelet Transform and Structural Constraints

  • Yao, Fan
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1129-1144
    • /
    • 2020
  • The thangka image inpainting method based on wavelet transform is not ideal for contour curves when the high frequency information is repaired. In order to solve the problem, a new image inpainting algorithm is proposed based on edge structural constraints and wavelet transform coefficients. Firstly, a damaged thangka image is decomposed into low frequency subgraphs and high frequency subgraphs with different resolutions using wavelet transform. Then, the improved fast marching method is used to repair the low frequency subgraphs which represent structural information of the image. At the same time, for the high frequency subgraphs which represent textural information of the image, the extracted and repaired edge contour information is used to constrain structure inpainting in the proposed algorithm. Finally, the texture part is repaired using texture synthesis based on the wavelet coefficient characteristic of each subgraph. In this paper, the improved method is compared with the existing three methods. It is found that the improved method is superior to them in inpainting accuracy, especially in the case of contour curve. The experimental results show that the hierarchical method combined with structural constraints has a good effect on the edge damage of thangka images.

Electrical Engineering Design Method Based on Neural Network and Application of Automatic Control System

  • Zhe, Zhang;Yongchang, Zhang
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.755-762
    • /
    • 2022
  • The existing electrical engineering design method and the dynamic objective function in the application process of automatic control system fail to meet the unbounded condition, which affects the control tracking accuracy. In order to improve the tracking control accuracy, this paper studies the electrical engineering design method based on neural network and the application of automatic control system. This paper analyzes the structure and working mechanism of electrical engineering automation control system by an automation control model with main control objectives. Following the analysis, an optimal solution of controllability design and fault-tolerant control is figured out. The automatic control power coefficient is distributed based on an ideal control effect of system. According to the distribution results, an automatic control algorithm is based on neural network for accurate control. The experimental results show that the electrical automation control method based on neural network can significantly reduce the control following error to 3.62%, improve the accuracy of the electrical automation tracking control, thus meeting the actual production needs of electrical engineering automation control system.

A Study on the Heat Transfer Characteristics Around a Surface-Mounted Air-Cooled Module for the Flow Angle-of-Attack (흐름 영각에 따른 강제공랭 모듈 주위의 열전달 특성에 관한 연구)

  • Park, Sang-Hui;Sin, Dae-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1267-1275
    • /
    • 2002
  • An experimental study was performed to investigate adiabatic wall temperature and heat transfer coefficient around a module cooled by forced air flow. The flow angle of attack to the module were 0$^{\circ}$and 45$^{\circ}$. In the first method, inlet air flow(1~7m/s) and input power.(3, 5, 7W) were varied after a heated module was placed on an adiabatic floor(320$\times$550$\times$1㎣). An adiabatic wall temperature was determinated to use liquid crystal film. In the second method to determinate heat transfer coefficient, inlet air flow(1~7m/s) and the heat flux of rubber heater(0.031~0.062W/$m^2$) were varied after an adiabatic module was placed on rubber heater covering up an adiabatic floor. Additional information is visualized by an oil-film method of the surface flow on the floor and the module. Plots of $T_{ad}$ and $h_{ad}$ show marked effects of flow development from the module and dispersion of thermal wake near the module. Certain key features of the data set obtained by this investigation may serve as a benchmark for thermal-design codes based on CFD.

Analysis on Monopole Antenna for Moisture Determination in Oil Palm Fruit Using Finite Difference Method

  • Cheng, E.M.;Abbas, Z.;Rahim @ Samsuddin, H.A.;Lee, K.Y.;You, K.Y.;Hassan, J.;Zainuddin, H.;Khor, S.F.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1754-1762
    • /
    • 2016
  • Finite difference analysis were applied to study the principle operation of monopole antenna for moisture determination in oil palm fruit at 2 GHz. The electromagnetic field interact with oil palm fruit on the interface between the antenna and oil palm fruit and cause a reflection. The reflection measurement is based on mismatch impedance or dielectric properties between two media. Reflection coefficient is used to quantify the level of reflection. The monopole antenna was made of RG405/U semi-rigid coaxial cable with an inner and outer diameter of 0.45 mm and 1.50 mm, respectively with 2.23 mm length of protruding conductor over 5.66 cm length of monopole antenna. This monopole antenna for moisture detection was compared with induced EMF method in terms of reflection coefficient at 2 GHz. The results show that the complex reflection coefficient measured using monopole antenna provides significant results to predict moisture content in oil palm fruit.

A Novel Equivalent Wiener-Hopf Equation with TDL coefficient in Lattice Structure

  • Cho, Ju-Phil;Ahn, Bong-Man;Hwang, Jee-Won
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.500-504
    • /
    • 2011
  • In this paper, we propose an equivalent Wiener-Hopf equation. The proposed algorithm can obtain the weight vector of a TDL(tapped-delay-line) filter and the error simultaneously if the inputs are orthogonal to each other. The equivalent Wiener-Hopf equation was analyzed theoretically based on the MMSE(minimum mean square error) method. The results present that the proposed algorithm is equivalent to original Wiener-Hopf equation. The new algorithm was applied into the identification of an unknown system for evaluating the performance of the proposed method. We compared the Wiener-Hopf solution with the equivalent Wiener-Hopf solution. The simulation results were similar to those obtained in the theoretical analysis. In conclusion, our method can find the coefficient of the TDL (tapped-delay-line) filter where a lattice filter is used, and also when the process of Gram-Schmidt orthogonalization is used. Furthermore, a new cost function is suggested which may facilitate research in the adaptive signal processing area.

Three-dimensional limit analysis of seismic stability of tunnel faces with quasi-static method

  • Zhang, B.;Wang, X.;Zhang, J.S.;Meng, F.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.301-318
    • /
    • 2017
  • Based on the existing research results, a three-dimensional failure mechanism of tunnel face was constructed. The dynamic seismic effect was taken into account on the basis of quasi-static method, and the nonlinear Mohr-Coulomb failure criterion was introduced into the limit analysis by using the tangent technique. The collapse pressure along with the failure scope of tunnel face was obtained through nonlinear limit analysis. Results show that nonlinear coefficient and initial cohesion have a significant impact on the collapse pressure and failure zone. However, horizontal seismic coefficient and vertical seismic proportional coefficient merely affect the collapse pressure and the location of failure surface. And their influences on the volume and height of failure mechanism are not obvious. By virtue of reliability theory, the influences of horizontal and vertical seismic forces on supporting pressure were discussed. Meanwhile, safety factors and supporting pressures with respect to 3 different safety levels are also obtained, which may provide references to seismic design of tunnels.

Uncertainty quantification of the power control system of a small PWR with coolant temperature perturbation

  • Li, Xiaoyu;Li, Chuhao;Hu, Yang;Yu, Yongqi;Zeng, Wenjie;Wu, Haibiao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2048-2054
    • /
    • 2022
  • The coolant temperature feedback coefficient is an important parameter of reactor core power control system. To study the coolant temperature feedback coefficient influence on the core power control system of small PWR, the core power control system is built with the nonlinear model and fuzzy control theory. Then, the uncertainty quantification method of reactor core parameters is established based on the Latin hypercube sampling method and the Bootstrap method. Finally, under the conditions of reactivity step perturbation and coolant inlet temperature step perturbation, uncertainty analysis for two cases is carried out. The result shows that with fuzzy controller and fuzzy PID controller, the uncertainty of the coolant temperature feedback coefficient affects the core power control system, and the maximum uncertainties of core relative power, coolant temperature deviation, fuel temperature deviation and total reactivity are acceptable.

Prediction of Residual Resistance Coefficient of Ships using Convolutional Neural Network (합성곱 신경망을 이용한 선박의 잉여저항계수 추정)

  • Kim, Yoo-Chul;Kim, Kwang-Soo;Hwang, Seung-Hyun;Yeon, Seong Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.243-250
    • /
    • 2022
  • In the design stage of hull forms, a fast prediction method of resistance performance is needed. In these days, large test matrix of candidate hull forms is tested using Computational Fluid Dynamics (CFD) in order to choose the best hull form before the model test. This process requires large computing times and resources. If there is a fast and reliable prediction method for hull form performance, it can be used as the first filter before applying CFD. In this paper, we suggest the offset-based performance prediction method. The hull form geometry information is applied in the form of 2D offset (non-dimensionalized by breadth and draft), and it is studied using Convolutional Neural Network (CNN) and adapted to the model test results (Residual Resistance Coefficient; CR). Some additional variables which are not included in the offset data such as main dimensions are merged with the offset data in the process. The present model shows better performance comparing with the simple regression models.

Development and Evaluation of skin Hydration Measure System using the Suscepance Method (Susceptance를 이용한 피부수화도 측정 장비의 개발 및 평가)

  • Kim, Hong-Sig;Jang, Woo-Young;Shin, Kun-Soo;Cho, Baek-Hwan;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.493-501
    • /
    • 2008
  • In this paper, a novel system is proposed to measure skin hydration using the susceptance method. This system largely consists of a low-voltage(${\pm}2.6$ V) driven circuit and minimized electrodes of size($5{\times}5mm^2$). To evaluate the accuracy of the novel system in measuring skin hydration, skin hydration values from 105 subjects are measured by the proposed system. The measurements are then compared to those obtained by the golden reference device based on the capacitance method in terms of Intraclass Correlation Coefficient(ICC) and correlation coefficient. All measurements are performed on 7 sites, which are forehead, Crow's foot, cheek, chin, volar forearm, dorsal forearm, and back of the hand, in a room where the temperature and humidity are maintained at an uniform level of $22{\pm}2^{\circ}C$ and $50{\pm}5%$, respectively. ICC values are above 0.9(p=0.001), signifying that the skin hydration values measured by the two methods show a good level of reliability. Correlation coefficient between the two methods is also 0.562(p=0.001). Based on these results, it is expected that the proposed system may be applicable in a variety of clinical or cosmetic areas.