• Title/Summary/Keyword: coefficient-based method

Search Result 2,699, Processing Time 0.037 seconds

Problem-based Learning Experience in Undergraduate Pharmacotherapy Course (학부과정 약물치료학 수업에 문제중심학습의 도입)

  • Min, Bokyung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.23 no.4
    • /
    • pp.291-299
    • /
    • 2013
  • Purpose: Problem-based learning (PBL) has been adopted to foster active and self-directed learning and enhance critical thinking and problem-solving skills in many health-care academic disciplines in Korea. Interest in PBL has rapidly grown with a 6 year pharmacy degree program in Korea. The objective of this study was to evaluate feasibility of PBL, student satisfaction and academic performance with a self-assessment survey questionnaire. Method: Sixty students participated in the PBL for pharmacotherapy course. Average scores from student self-assessment on participation, satisfaction, and academic performance were $3.85{\pm}0.55$, $2.94{\pm}1.04$, $3.09{\pm}0.91$ out of 5 point lickert scale (1-do not agree at all, 5-agree completely), respectively. Results & Conclusion: The level of participation was positively correlated with improvement of communication skill in academic performance (correlation coefficient 0.27, p=0.037). In the quality analysis of the cases provided for PBL, students who participated more in the PBL greatly agreed the cases given were appropriate to learn fundamental knowledge for each disease state. The students disagreed that PBL was fun. The students stated that PBL was good to experience self-directed learning and clinical context beforehand but too time-consuming to devote and too demanding to commit. Lack of facilitator and insight on active learning should be rectified for successful launch of PBL in Korean pharmacy education.

Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV

  • Chen, Xiang-Jian;Li, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.172-182
    • /
    • 2013
  • This paper focuses on the modeling and intelligent control of the new Eight-Rotor MAV, which is used to solve the problem of the low coefficient proportion between lift and gravity for the Quadrotor MAV. The Eight-Rotor MAV is a nonlinear plant, so that it is difficult to obtain stable control, due to uncertainties. The purpose of this paper is to propose a robust, stable attitude control strategy for the Eight-Rotor MAV, to accommodate system uncertainties, variations, and external disturbances. First, an interval type-II fuzzy neural network is employed to approximate the nonlinearity function and uncertainty functions in the dynamic model of the Eight-Rotor MAV. Then, the parameters of the interval type-II fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on the Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system. The validity of the proposed control method has been verified in the Eight-Rotor MAV through real-time experiments. The experimental results show that the performance of the interval type-II fuzzy neural network based adaptive sliding mode controller could guarantee the Eight-Rotor MAV control system good performances under uncertainties, variations, and external disturbances. This controller is significantly improved, compared with the conventional adaptive sliding mode controller, and the type-I fuzzy neural network based sliding mode controller.

Performance Evaluation of a Thrust Reverser Using an Euler Solver (비장착 나셀의 역추력기 형상에 대한 3차원 Euler 유동해석)

  • Kim Soo Mi;Yang Soo Seok;Lee Dae Sung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.167-173
    • /
    • 1999
  • An Euler-based CFD tool has been developed for the performance evaluation of a thrust reverser mounted on a high bypass ratio turbofan engine. The computational domain surrounded by the ground and non-reflection boundary includes the whole nacelle configuration with a deployed thrust reverser. The numerical algorithm is based on the modified Godunovs scheme to allow the second order accuracy in both space and time. The grid system is generated by using eleven multi-blocks, of which the total cell number is 148,400. The thrust reverser is modeled as if it locates at the nacelle simply in all circumferential direction. The existence of a fan and an OGV(Outlet Guide Vane) is simulated by adopting the actuator disk concept, in which predetermined radial distributions of stagnation pressure ratio and adiabatic efficiency coefficient are used for the rotor type disk, and stagnation pressure losses and flow outlet angles for the stator type disk. All boundary conditions including the fan and OGV simulation are treated by Riemann solver. The developed solver is applied to a turbofan engine with a bypass ratio of about 5.7 and the diameter of the fan cowl of 83 inch. The computational results show that the Euler-based inviscid method is very useful and economical to evaluate the performance of thrust reversers.

  • PDF

Model-Based Prediction of Pulsed Eddy Current Testing Signals from Stratified Conductive Structures

  • Zhang, Jian-Hai;Song, Sung-Jin;Kim, Woong-Ji;Kim, Hak-Joon;Chung, Jong-Duk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.609-615
    • /
    • 2011
  • Excitation and propagation of electromagnetic field of a cylindrical coil above an arbitrary number of conductive plates for pulsed eddy current testing(PECT) are very complex problems due to their complicated physical properties. In this paper, analytical modeling of PECT is established by Fourier series based on truncated region eigenfunction expansion(TREE) method for a single air-cored coil above stratified conductive structures(SCS) to investigate their integrity. From the presented expression of PECT, the coil impedance due to SCS is calculated based on analytical approach using the generalized reflection coefficient in series form. Then the multilayered structures manufactured by non-ferromagnetic (STS301L) and ferromagnetic materials (SS400) are investigated by the developed PECT model. Good prediction of analytical model of PECT not only contributes to the development of an efficient solver but also can be applied to optimize the conditions of experimental setup in PECT.

Adenosine Kinase Inhibitor Design Based on Pharmacophore Modeling

  • Lee, Yun-O;Bharatham, Nagakumar;Bharatham, Kavitha;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.561-566
    • /
    • 2007
  • Adenosine kinase (AK) is a ubiquitous intracellular enzyme, which catalyzes the phosphorylation of adenosine (ADO) to adenosine monophosphate (AMP). AK inhibitors have therapeutic potential as analgesic and antiinflammatory agents. A chemical feature based pharmacophore model has been generated from known AK inhibitors (26 training set compounds) by HypoGen module implemented in CATALYST software. The top ranked hypothesis (Hypo1) contained four features of two hydrogen-bond acceptors (HBA) and two hydrophobic aromatics (Z). Hypo1 was validated by 124 test set molecules with a correlation coefficient of 0.905 between experimental and estimated activity. It was also validated by CatScramble method. Thus, the Hypo1 was exploited for searching new lead compounds over 238,819 chemical compounds in NCI database and then the selected compounds were screened based on restriction estimated activity and Lipinski's rules to evaluate their drug-like properties. Finally we could obtain 72 new lead candidates and the two best compound structures from them were posted.

Investigation of a SP/S Resonant Compensation Network Based IPT System with Optimized Circular Pads for Electric Vehicles

  • Ma, Chenglian;Ge, Shukun;Guo, Ying;Sun, Li;Liu, Chuang
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2359-2367
    • /
    • 2016
  • Inductive power transfer (IPT) systems have become increasingly popular in recharging electric vehicle (EV) batteries. This paper presents an investigation of a series parallel/series (SP/S) resonant compensation network based IPT system for EVs with further optimized circular pads (CPs). After the further optimization, the magnetic coupling coefficient and power transfer capacity of the CPs are significantly improved. In this system, based on a series compensation network on the secondary side, the constant output voltage, utilizing a simple yet effective control method (fixed-frequency control), is realized for the receiving terminal at a settled relative position under different load conditions. In addition, with a SP compensation network on the primary side, zero voltage switching (ZVS) of the inverter is universally achieved. Simulations and experiments have been implemented to validate the favorable applicability of the modified optimization of CPs and the proposed SP/S IPT system.

Development of Fault Location Algorithm and Its Verification Experiments for HVDC Submarine Cables

  • Jung, Chae-Kyun;Park, Hung-Sok;Kang, Ji-Won;Wang, Xinheng;Kim, Yong-Kab;Lee, Jong-Beom
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.859-868
    • /
    • 2012
  • A new fault location algorithm based on stationary wavelet transform and its verification experiment results are described for HVDC submarine cables in this paper. For wavelet based fault location algorithm, firstly, 4th level approximation coefficients decomposed by wavelet transform function are superimposed by correlation, then the distance to the fault point is calculated by time delay between the first incident signal and the second reflected signal. For the verification of this algorithm, the real experiments based on various fault conditions and return types of fault current are performed at HVDC submarine cable test yard located in KEPCO(Korea Electric Power Corporation) Power Testing Center of South Korea. It proves that the fault location method proposed in this paper is very simple but very quick and accurate for HVDC submarine cable fault location.

MAXIMUM BRAKING FORCE CONTROL UTILIZING THE ESTIMATED BRAKING FORCE

  • Hong, D.;Hwang, I.;SunWoo, M.;Huh, K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.211-217
    • /
    • 2007
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS (Anti-lock Brake System) systems. In realizing the wheel slip control systems, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance and stability enhancement. In this paper, a robust wheel slip controller is developed based on the adaptive sliding mode control method and an optimal target slip assignment algorithm is proposed for maximizing the braking force. An adaptive law is formulated to estimate the braking force in real-time. The wheel slip controller is designed based on the Lyapunov stability theory considering the error bounds in estimating the braking force and the brake disk-pad friction coefficient. The target slip assignment algorithm searches for the optimal target slip value based on the estimated braking force. The performance of the proposed wheel slip control system is verified in HILS (Hardware-In-the-Loop Simulator) experiments and demonstrates the effectiveness of the wheel slip control in various road conditions.

SAMPLING BASED UNCERTAINTY ANALYSIS OF 10 % HOT LEG BREAK LOCA IN LARGE SCALE TEST FACILITY

  • Sengupta, Samiran;Dubey, S.K.;Rao, R.S.;Gupta, S.K.;Raina, V.K
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.690-703
    • /
    • 2010
  • Sampling based uncertainty analysis was carried out to quantify uncertainty in predictions of best estimate code RELAP5/MOD3.2 for a thermal hydraulic test (10% hot leg break LOCA) performed in the Large Scale Test Facility (LSTF) as a part of an IAEA coordinated research project. The nodalisation of the test facility was qualified for both steady state and transient level by systematically applying the procedures led by uncertainty methodology based on accuracy extrapolation (UMAE); uncertainty analysis was carried out using the Latin hypercube sampling (LHS) method to evaluate uncertainty for ten input parameters. Sixteen output parameters were selected for uncertainty evaluation and uncertainty band between $5^{th}$ and $95^{th}$ percentile of the output parameters were evaluated. It was observed that the uncertainty band for the primary pressure during two phase blowdown is larger than that of the remaining period. Similarly, a larger uncertainty band is observed relating to accumulator injection flow during reflood phase. Importance analysis was also carried out and standard rank regression coefficients were computed to quantify the effect of each individual input parameter on output parameters. It was observed that the break discharge coefficient is the most important uncertain parameter relating to the prediction of all the primary side parameters and that the steam generator (SG) relief pressure setting is the most important parameter in predicting the SG secondary pressure.

PEMFC Based Cogeneration System Using Heat Pump (히트펌프를 이용한 PEMFC 기반 열병합 발전 시스템)

  • BUI, TUANANH;KIM, YOUNG SANG;LEE, DONG KEUN;AHN, KOOK YOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.324-330
    • /
    • 2021
  • In recent years, polymer electrolyte membrane fuel cell (PEMFC) based cogeneration system has received more and more attention from energy researchers because beside electricity, the system also meets the residential thermal demand. However, the low-quality heat exited from PEMFC should be increased temperature before direct use or storage. This study proposes a method to utilize the heat exhausted from a 10 kW PEMFC by coupling a heat pump. Two different configuration using heat pump and a reference layout with heater are analyzed in term of thermal and total efficiency. The system coefficient of performance (COP) increases from 0.87 in layout with heaters to 1.26 and 1.29 in configuration with heat pump and cascade heat pump, respectively. Lastly, based on system performance result, another study in economics point of view is proposed.