• Title/Summary/Keyword: coefficient problems

Search Result 864, Processing Time 0.027 seconds

A Study on Hazardous Sound Detection Robust to Background Sound and Noise (배경음 및 잡음에 강인한 위험 소리 탐지에 관한 연구)

  • Ha, Taemin;Kang, Sanghoon;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1606-1613
    • /
    • 2021
  • Recently various attempts to control hardware through integration of sensors and artificial intelligence have been made. This paper proposes a smart hazardous sound detection at home. Previous sound recognition methods have problems due to the processing of background sounds and the low recognition accuracy of high-frequency sounds. To get around these problems, a new MFCC(Mel-Frequency Cepstral Coefficient) algorithm using Wiener filter, modified filterbank is proposed. Experiments for comparing the performance of the proposed method and the original MFCC were conducted. For the classification of feature vectors extracted using the proposed MFCC, DNN(Deep Neural Network) was used. Experimental results showed the superiority of the modified MFCC in comparison to the conventional MFCC in terms of 1% higher training accuracy and 6.6% higher recognition rate.

ADMM for least square problems with pairwise-difference penalties for coefficient grouping

  • Park, Soohee;Shin, Seung Jun
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.4
    • /
    • pp.441-451
    • /
    • 2022
  • In the era of bigdata, scalability is a crucial issue in learning models. Among many others, the Alternating Direction of Multipliers (ADMM, Boyd et al., 2011) algorithm has gained great popularity in solving large-scale problems efficiently. In this article, we propose applying the ADMM algorithm to solve the least square problem penalized by the pairwise-difference penalty, frequently used to identify group structures among coefficients. ADMM algorithm enables us to solve the high-dimensional problem efficiently in a unified fashion and thus allows us to employ several different types of penalty functions such as LASSO, Elastic Net, SCAD, and MCP for the penalized problem. Additionally, the ADMM algorithm naturally extends the algorithm to distributed computation and real-time updates, both desirable when dealing with large amounts of data.

Determination of Weight Coefficients of Multiple Objective Reservoir Operation Problem Considering Inflow Variation (유입량의 변동성을 고려한 저수지 연계 운영 모형의 가중치 선정)

  • Kim, Min-Gyu;Kim, Jae-Hee;Kim, Sheung-Kown
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • The purpose of this study is to propose a procedure that will be able to find the most efficient sets of weight coefficients for the Geum-River basin in Korea. The result obtained from multi-objective optimization model is inherently sensitive to the weight coefficient on each objective. In multi-objective reservoir operation problems, the coefficient setting may be more complicated because of the natural variation of inflow. Therefore, for multi-objective reservoir operation problems, it may be important for modelers to provide reservoir operators with appropriate sets of weight coefficients considering the inflow variation. This study presents a procedure to find an appropriate set of weight coefficients under the situation that has inflow variation. The proposed procedure uses GA-CoMOM to provide a set of weight coefficient sets. A DEA-window analysis and a cross efficiency analysis are then performed in order to evaluate and rank the sets of weight coefficients for various inflow scenarios. This proposed procedure might be able to find the most efficient sets of weight coefficients for the Geum-River basin in Korea.

A Study on Determination of the Minimum Vertical Spring Stiffness of Track Pads Considering Running Safety (열차주행안전을 고려한 궤도패드의 최소 수직 스프링계수 결정에 관한 연구)

  • Kim, Jeong-il;Yang, Sin-Chu;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.299-309
    • /
    • 2006
  • Railway noise and vibration has been recognized as major problems with the speed-up of rolling stock. As a kind of solution to these problems, the decrease of stiffness of track pad have been tried. However, in this case, overturning of rail due to lateral force should be considered because it can have effect on the safety of running train. Therefore, above two things - decrease of stiffness of track pad and overturning of rail due to lateral force - should be considered simultaneously for the appropriate determination of spring coefficient of track pad. With this viewpoint, minimum spring coefficient of track pad is estimated through the comparison between the theoretical relationship about the overturning of rail and 3-dimensional FE analysis result. Two kinds of Lateral force and wheel load are used as input loads. Extracted values from the conventional estimation formula and the Shinkansen design loads are used. It is found that the overturning of rail changes corresponding to the change of the stiffness of track pad and the ratio of lateral force to wheel load. Moreover, it is found that the analysis model can have influence on the results. Through these procedure, minimum spring coefficient of track pad is estimated.

Calculation of Heat Transfer Coefficients by Steady State Inverse Heat Conduction (정상상태의 열전달계수 예측을 위한 최적화기법의 열전도 역문제에 관한 연구)

  • 조종래;배원병;이부윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.549-556
    • /
    • 1997
  • The inverse heat conduction problems is the calculation of surface heat transfer coefficients by utilizing measured temperature. The numerical technique of finite element analysis and optimizition is introduced to calculate temperatures and heat transfer coefficients. The calculated heat transfer coefficients and temperature distribution are good agreement with the results of direct analysis. The inverse method has been applied to the control valve of nuclear power plant.

  • PDF

Improvment of Branch and Bound Algorithm for the Integer Generalized Nntwork Problem (정수 일반네트워크문제를 위한 분지한계법의 개선)

  • 김기석;김기석
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.2
    • /
    • pp.1-19
    • /
    • 1994
  • A generalized network problem is a special class of linear programming problem whose coefficient matrix contains at most two nonzero elements per column. A generalized network problem with 0-1 flow restrictions is called an integer generalized network(IGN) problem. In this paper, we presented a branch and bound algorithm for the IGN that uses network relaxation. To improve the procedure, we develop various strategies, each of which employs different node selection criterion and/or branching variable selection criterion. We test these solution strategies and compare their efficiencies with LINDO on 70 randomly generated problems.

  • PDF

A Instantaneous Torque Analysis of the Darrieus Wind Turbine varying with the rotating Angle of blade (다리우스 풍차의 회전각에 따른 순간 토오크 해석)

  • Oh, Chul-Soo;Kwon, Soon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.659-661
    • /
    • 1992
  • This paper deals with aerodynamic problems of the rotating blade of Darrieus wind turbine and its instantaneous torque. The instantaneous torque varying with the rotating angle of blade was obtained through resultant wind velocity, angle of attack, lift and drag coefficient. These are obtained from a given wing section, size and wind velocity.

  • PDF

An assignment method for part-machine cell formation problem in the presence of multiple process routes

  • Won, You-Kyung;Kim, Sehun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.236-243
    • /
    • 1994
  • In this paper we consider the part-machine cell formation decision of the generalized Group Technology(GT) problem in which multiple process routes can be generated for each part. The existing p-median model and similarity coefficient algorithm can solve only small-sized or well-structured cases. We suggest an assignment method for the cell formation problem. This method uses an assignment model which is a simple linear programming. Numerical examples show that our assignment method provides good separable cells formation even for large-sized and ill-structured problems.

Stress and temperature analysis of a drum brake using FEM (유한요소법을 이용한 드럼브레이크의 응력 및 온도 해석)

  • 함선균;이기수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.707-710
    • /
    • 2001
  • Brakes are one of the important safety parts in cars. The requirements of brakes in performance, in comfort, and working lifetime are high. This paper presents the static analysis on the stress and temperature of a automotive drum brake. The particular interest is the distribution of the contact pressure between brake lining and drum. The problems to be solved are the effects of friction coefficient, actuation force, temperature, and brake component's stiffness. The contact problem includes friction, and is solved using the ABAQUS.

  • PDF

Bootstrap Confidence Intervals of Ridge Estimators in Mixture Experiments (혼합물실험에서 능형추정량에 대한 붓스트랩 신뢰구간)

  • Jang, Dae-Heung
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.3
    • /
    • pp.62-65
    • /
    • 2006
  • We can use the ridge regression as a means for stabilizing the coefficient estimators in the fitted model when performing experiments in highly constrained regions causes collinearity problems in mixture experiments. But there is no theory available on which to base statistical inference of ridge estimators. The bootstrap could be used to seek the confidence intervals of ridge estimators.