• 제목/요약/키워드: coefficient of cyclotomic polynomial

검색결과 4건 처리시간 0.015초

ON A CLASS OF TERNARY CYCLOTOMIC POLYNOMIALS

  • ZHANG, BIN;ZHOU, YU
    • 대한수학회보
    • /
    • 제52권6호
    • /
    • pp.1911-1924
    • /
    • 2015
  • A cyclotomic polynomial ${\Phi}_n(x)$ is said to be ternary if n = pqr for three distinct odd primes p < q < r. Let A(n) be the largest absolute value of the coefficients of ${\Phi}_n(x)$. If A(n) = 1 we say that ${\Phi}_n(x)$ is flat. In this paper, we classify all flat ternary cyclotomic polynomials ${\Phi}_{pqr}(x)$ in the case $q{\equiv}{\pm}1$ (mod p) and $4r{\equiv}{\pm}1$ (mod pq).

ON THE SCALED INVERSE OF (xi - xj) MODULO CYCLOTOMIC POLYNOMIAL OF THE FORM Φps (x) OR Φpsqt (x)

  • Cheon, Jung Hee;Kim, Dongwoo;Kim, Duhyeong;Lee, Keewoo
    • 대한수학회지
    • /
    • 제59권3호
    • /
    • pp.621-634
    • /
    • 2022
  • The scaled inverse of a nonzero element a(x) ∈ ℤ[x]/f(x), where f(x) is an irreducible polynomial over ℤ, is the element b(x) ∈ ℤ[x]/f(x) such that a(x)b(x) = c (mod f(x)) for the smallest possible positive integer scale c. In this paper, we investigate the scaled inverse of (xi - xj) modulo cyclotomic polynomial of the form Φps (x) or Φpsqt (x), where p, q are primes with p < q and s, t are positive integers. Our main results are that the coefficient size of the scaled inverse of (xi - xj) is bounded by p - 1 with the scale p modulo Φps (x), and is bounded by q - 1 with the scale not greater than q modulo Φpsqt (x). Previously, the analogous result on cyclotomic polynomials of the form Φ2n (x) gave rise to many lattice-based cryptosystems, especially, zero-knowledge proofs. Our result provides more flexible choice of cyclotomic polynomials in such cryptosystems. Along the way of proving the theorems, we also prove several properties of {xk}k∈ℤ in ℤ[x]/Φpq(x) which might be of independent interest.

THE MINIMAL POLYNOMIAL OF cos(2π/n)

  • Gurtas, Yusuf Z.
    • 대한수학회논문집
    • /
    • 제31권4호
    • /
    • pp.667-682
    • /
    • 2016
  • In this article we show a recursive method to compute the coefficients of the minimal polynomial of cos($2{\pi}/n$) explicitly for $n{\geq}3$. The recursion is not on n but on the coefficient index. Namely, for a given n, we show how to compute ei of the minimal polynomial ${\sum_{i=0}^{d}}(-1)^ie_ix^{d-i}$ for $i{\geq}2$ with initial data $e_0=1$, $e_1={\mu}(n)/2$, where ${\mu}(n)$ is the $M{\ddot{o}}bius$ function.