• Title/Summary/Keyword: code-provisions

Search Result 295, Processing Time 0.025 seconds

The History of Transformation of Outdoor Landscape in Apartment Complex - Focused on the Enactment and Revision of laws and Regulations - (아파트 옥외공간의 조경 변천에 관한 연구 - 법규와 법조문의 변화를 중심으로 -)

  • Kim, Dae-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.2
    • /
    • pp.39-47
    • /
    • 2003
  • This research traces the history of legislative matters regarding the enactment and revision of laws and regulations related to the outdoor landscape in apartment complex. The years before 1976 can be classified as 'a period of darkness' for the landscape in apartment complex due to absence of landscape legislation. From the year of 1977 when the landscape planting and mere necessities were carried out according to the local administration's building standard to the year of 1990 can be classified as 'a period of quickening'. The year of after 1991 when the enactment of the code#32 called "the green space in site" in the "Korea Building Code" and the "Korea Housing Standard & Regulation" was made, and various construction regulations and provisions were revised in order to improve the scantiness of the apartment complex and its environment should be called 'a period of development'.

New approach in design of seismic isolated buildings applying clusters of rubber bearings in isolation systems

  • Melkumyan, Mikayel G.
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.587-606
    • /
    • 2013
  • The given paper presents a new approach in design of seismic isolation systems of base isolated buildings. The idea is to install not one big size rubber bearing under the columns and/or shear walls, or one by one with certain spacing under the load-bearing walls, but to install a group/cluster of small size bearings, in order to increase the overall effectiveness of the isolation system. The advantages of this approach are listed and illustrated by the examples. Also the results of analyses of some buildings where the approach on installation of clusters of rubber bearings was used in their isolation systems are given for two cases: i) when the analyses are carried out based on the provisions of the Armenian Seismic Code, and ii) when the time history analyses are carried out. Obtained results are compared and discussed. Paper also presents, as an example, detailed analysis and design of the 18-story unique building in one of the residential complexes in Yerevan. Earthquake response analyses of this building were carried out in two versions, i.e. when the building is base isolated and when it is fixed base. Several time histories were used in the analyses. Comparison of the obtained results indicates the high effectiveness of the proposed structural concepts of isolation systems and the need for further improvement of the Seismic Code provisions regarding the values of the reduction factors. A separate section in the paper dedicated to the design of high damping laminated rubber-steel bearings and to results of their tests.

Developing girder distribution factors in bridge analysis through B-WIM measurements: An empirical study

  • Widi Nugraha;Winarputro Adi Riyono;Indra Djati Sidi;Made Suarjana;Ediansjah Zulkifli
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.207-220
    • /
    • 2023
  • The safety of bridges are critical in our transportation infrastructure. Bridge design and analysis require complex structural analysis procedures to ensure their safety and stability. One common method is to calculate the maximum moment in the girders to determine the appropriate bridge section. Girder distribution factors (GDFs) provide a simpler approach for performing this analysis. A GDF is a ratio between the response of a single girder and the total response of all girders in the bridge. This paper explores the significance of GDFs in bridge analysis and design, including their importance in the evaluation of existing bridges. We utilized Bridge Weigh-in-motion (B-WIM) measurements of five simple supported girder bridge in Indonesia to develop a simple GDF provisions for the Indonesia's bridge design code. The B-WIM measurements enable us to know each girder strain as a response due to vehicle loading as the vehicle passes the bridge. The calculated GDF obtained from the B-WIM measurements were compared with the code-specified GDF and the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) bridge design specification. Our study found that the code specified GDF was adequate or conservative compared to the GDF obtained from the B-WIM measurements. The proposed GDF equation correlates well with the AASHTO LRFD bridge design specification. Developing appropriate provisions for GDFs in Indonesian bridge design codes can provides a practical solution for designing girder bridges in Indonesia, ensuring safety while allowing for easier calculations and assessments based on B-WIM measurements.

State of Practice of Performance-Based Seismic Design in Indonesia

  • Sukamta, Davy;Alexander, Nick
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.211-220
    • /
    • 2012
  • The current 2002 Indonesian Seismic Code consists of prescriptive criteria that are intended to result in buildings capable of providing certain levels of performance. However, the actual performance capability of buildings is not assessed as part of the code procedures. Several analysis procedures are allowed, and the state of practice is to use the RSA with six-zone seismic map developed for 475-year earthquake. This code is being revised and will adopt many of the ASCE7-10 provisions and 2475-year earthquake for MCE. The growth of tall buildings compels engineers to look for more optimal lateral system. The use of RC core wall as single system has been adopted by very few engineering firms, which is allowed in the current code but will no longer be the case if the new one is in effect. Other innovative structural system such as core wall and outrigger is not addressed in the proposed new code. Engineers must then resort to NLRHA. Currently, one 50-story building under construction using RC core wall and outrigger has been designed with RSA and employing capacity design principles, then evaluated using NLRHA per TBI Guidelines. Based on the evaluation, the performance of the 50-story building generally still meets the criteria of the TBI Guidelines. The result of the case study is presented in this paper.

Probability-Based USD Code for Reinforced Concrete (확률이론(確率理論)에 기초(基礎)한 철근(鐵筋)콘크리트 강도설계규준(强度設計規準))

  • Cho, Hyo Nam;Chang, Dong Il;Shin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.53-60
    • /
    • 1986
  • This study is directed to propose a probability based LRFD design code, which could possibly replace the traditional USD provisions of the current code, based on the AFOSM reliability theory. The uncertainties of resistances and load effects for each R.C. structural elements are evaluated and adopted considering our practice, and a set of rational target reliability indices are selected based on the calibration with the reliability of the current R.C. design code and by considering the desired hierarchy of safety level. Then, a set of common load factors are chosen from the results of load and resistance factors which are computed by AFOSM method using the Rackwitz-Fiessler's efficient practical algorithm which is to transform the non-normal variables into the equivalent normal variables. It may be asserted that the proposed LRFD code for the R.C. building structures may have to be incorporated into the current RC. design codes as a design provision corresponding to the USD provisions of the current R.C. design code.

  • PDF

Overview of Seismic Loads and Application of Local Code Provisions for Tall Buildings in Baku, Azerbaijan

  • Choi, Hi Sun;Sze, James;Ihtiyar, Onur;Joseph, Leonard
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.65-71
    • /
    • 2014
  • Baku, the capital of Azerbaijan, has seen a boom in construction in recent years. The old Baku city has been rapidly transforming into a new hub of high-rise buildings and lively cultural centers hosting the Euro Vision Song Contest in 2012 and European Games in 2015. A major population shift to Baku from its suburbs and the countryside has resulted in the doubling of Baku's population in the 4 years between 2009 and 2013. As of January 2013, Baku's population reached four million people, 43% of the citizens in Azerbaijan according to The State Statistical Committee of Azerbaijan. With this trend, the city needs more high-rise buildings to accommodate rapidly increasing demands for more housing and business space. Until the Azerbaijan Seismic Building Code was published in 2010 and became effective, many different seismic criteria, in terms of building codes and seismic intensities, were used for all new high-rise projects in Baku. Some designers used the SNIP (Russian) code with seismic level 9 or level 8 with 1 point penalty. Others used the Turkish code with Seismic Zone 1, UBC 97 with Zone 2 through 4, or IBC with Sa = 0.75 g through 1.0 g. The seismic intensity is now clarified with the Azerbaijan Seismic Building Code. However, the Azerbaijan Seismic Building Code is appropriate for low-rise buildings applications but may be inappropriate for high-rise project applications. This is because the code-defined response spectrum yields unrealistically conservative seismic forces for high-rise buildings with long periods, as compared to those determined by other internationally accepted building codes. This paper provides observations and recommendations for code-based seismic load assessment of high-rise buildings in the Baku area.

Evaluation of moment amplification factors for RCMRFs designed based on Iranian national building code

  • Habibi, Alireza;Izadpanah, Mehdi;Rohani, Sina
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.23-31
    • /
    • 2020
  • Geometric nonlinearity can significantly affect load-carrying capacity of slender columns. Dependence of structural stability on columns necessitates the consideration of second-order effects in the design process of columns, appropriately. On the whole, the design codes present a simplified procedure for second order analysis of slender columns. In this approximate method, the end moments of columns resulted from linear analysis (first-order) are multiplied by the recommended moment amplification factors of codes to achieve magnified moments of the second-order analysis. In the other approach, the equilibrium equations are directly solved for the deformed configuration of structure, so the resulting moments and deflections contain the influence of slenderness and increase more rapidly than do loads. The aim of this study is to evaluate the accuracy of moment amplification factors of Iranian national building code whose provisions are similar to the ACI requirement. Herein, finite element method is used to achieve magnified end moments of reinforced concrete moment resisting frames, and the outcomes are compared with the moments acquired based on the proposed approximate method by Iranian national building code. The results show that the approximate method of Iranian code for calculating magnified moments has significant errors for both unbraced and braced columns.

A study on the Means of Egress Codes for Interior Architecture in the United States - Focused on Evacuation Elements in the Interior Architectural Design - (미국의 실내건축 피난 규정에 관한 연구 - 실내건축계획에 있어 피난 요소를 중심으로 -)

  • Kim, Young-Sung;Cho, Sung-O
    • Korean Institute of Interior Design Journal
    • /
    • v.27 no.3
    • /
    • pp.24-32
    • /
    • 2018
  • The law reflects the situation of the times, understands the society, and shows the will of the state and the community. The Means of Egress should be maintained from design to construction, supervision, as well as use, in order to protect the lives and property of the residents as well as the safe use of the facilities. However, Interior Architects are think that evacuation and safety regulations are complex elements that change frequently and may inhibit the idea of design. The purpose of this study is to propose a design method for the use of safe facilities in the interior architectural design on the evacuation regulations affecting the actual design by the IBC(the International Building Code) and NFPA(National Fire Protection Association) LSC (Life Safety Code). The research method is to investigate and analyze the provisions related to the evacuation of interior architecture in the US and to understand the current regulations and the evacuation regulations. We suggest to design method to the details of the hallway, corridors, aisle accessway, door way, exit path, In particular, the design of furniture, tables and chairs layout that could be obstacles to evacuation situations is presented.

Comparison of the seismic performance of existing RC buildings designed to different codes

  • Zeris, Christos A.;Repapis, Constantinos C.
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.505-523
    • /
    • 2018
  • Static pushover analyses of typical existing reinforced concrete frames, designed according to the previous generations of design codes in Greece, have established these structures' inelastic characteristics, namely overstrength, global ductility capacity and available behaviour factor q, under planar response. These were compared with the corresponding demands at the collapse limit state target performance point. The building stock considered accounted for the typical variability, among different generations of constructed buildings in Greece, in the form, the seismic design code in effect and the material characteristics. These static pushover analyses are extended, in the present study, in the time history domain. Consequently, the static analysis predictions are compared with Incremental Dynamic Analysis results herein, using a large number of spectrum compatible recorded base excitations of recent destructive earthquakes in Greece and abroad, following, for comparison, similar conventional limiting failure criteria as before. It is shown that the buildings constructed in the 70s exhibit the least desirable behaviour, followed by the buildings constructed in the 60s. As the seismic codes evolved, there is a notable improvement for buildings of the 80s, when the seismic code introduced end member confinement and the requirement for a joint capacity criterion. Finally, buildings of the 90s, designed to modern codes exhibit an exceptionally good performance, as expected by the compliance of this code to currently enforced seismic provisions worldwide.

Flexural Fracture Behavior of Reinforced Concrete Beam Based on Fracture Mechanics Approach (파괴역학에 근거한 철근콘크리트 보의 휨 파괴거동)

  • 어석홍;최덕진;홍기호;김희성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.149-154
    • /
    • 2002
  • An analytical fracture mechanics approach was used to investigate the fracture behavior of reinforced concrete beams. By use of this approach based on fracture mechanics concepts, the crack width and length as well as the strength and cracking stability of reinforced concrete beams were investigated. The results obtained from the analytical studies were also discussed in terms of the minimum reinforcement ratio and crack width specified in design code provisions. The analytical approach based on fracture mechanics concepts are very useful to predict the fracture behavior of reinforced concrete beams.

  • PDF